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Abstract

Fermionic T-duality is the generalisation to superspace of bosonic T-duality (i.e. to include

fermionic degrees of freedom). Originally, T-duality described the equivalence relation between

two physical theories, each living on a different background. However, this thesis is concerned

with fermionic T-duality and its role in self-duality. The goal is to determine whether AdS

backgrounds with less than maximal supersymmetry are self-dual. A background is said to be

self-dual if, after a specific sequence of bosonic and fermionic T-duality transformations, the

original background is recovered. Self-dual backgrounds are of great interest due to their link

to integrability. Fermionic T-duality has played a pivotal role in proving that the maximally

supersymmetric background AdS5 × S5 is self-dual. This background is also known to be in-

tegrable, therefore, when it was shown to be self-dual, the hypothesis that self-duality implied

integrability, and vice-versa, was born. We investigate how far this hypothesis may be stretched

for a number of AdS backgrounds, for which integrability has already been determined. The

following backgrounds were considered: AdS2×S2×T 6 and AdSd×Sd×T (10−3d) (d = 2, 3). This

question of self-duality was approached in two ways. In the first approach we show that these

less supersymmetric backgrounds are self-dual by working with the supergravity fields and using

the fermionic Buscher procedure derived by Berkovits and Maldacena. In the second approach,

we verify the self-duality of Green-Schwarz supercoset σ-models on AdSd × Sd (d = 2, 3) back-

grounds. Furthermore, we prove the self-duality of AdS5×S5 without gauge fixing κ-symmetry.

We show that self-duality is a property which holds for the exceptional backgrounds, where the

need to T-dualise along one of the spheres arises, again. Nature is not supersymmetric, therefore

learning how to do physics in AdS5 × S5 is not enough. In order to understand theories like

Quantum Chromodynamics, we need to systematically break the supersymmetry present in our

toy models. In this regard, it is easy to appreciate the significance of studying backgrounds with

less than maximal supersymmetry.
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Introduction

String theory is the leading candidate for a theory which unifies gravity and quantum mechanics,

the research efforts in this exciting field of physics have been remarkable. String theory has

undergone enormous developments to arrive at the current paradigm - where symmetries play

an even larger role in our understanding of string theory [1]. As a result of this intensive

development, the field has exploded in a number of directions. Consequently, it has become

virtually impossible to keep up to date with all the streams of research being explored. This is

both very exciting and hugely daunting, especially for newcomers. That so many young scientists

still enter this field, despite the steep learning curve, speaks volumes about the enticing problems

that still need to be considered and solved.

During the mid-nineties string dualities suddenly formed the basis of serious study. Finally, there

was a general understanding of the importance of these types of symmetries. Duality symmetries

do not manifest themselves perturbatively in the weak coupling expansion of string theory,

the context in which string theory has mostly been probed, instead they give us information

about the exact string theory which is more complicated to study [1]. As a major driving

force in string theory, the uncovering of non-perturbative duality symmetries, asks whether it is

possible to study non-perturbative physics using perturbative techniques - a core tenet of the new

paradigm. Hence, it is not too surprising that string dualities remained hidden for so long. After

gaining access to strong coupling aspects through the use of mathematical tools associated with

string duality, it became clear that the relationship between weak and strong coupling would be

important. What could strong coupling teach us about weak coupling? Interest turned towards

the idea of weak/strong duality. In string theory this means that as the string coupling gs

becomes large we are able to find new dual degrees of freedom whose fluctuations become small.

That is, they are described by a new coupling g′s ∼ 1/gs . String theory includes gauge theory,

hence we need to consider a further point: weak/strong duality in the gauge theory is a necessary

(but not sufficient) condition to ensure that weak/strong duality exists in the string theory [1].

Progress was made when Hull, Townsend and independently Witten [2–4] proposed an almost

complete set of duals to all string theories possessing at least N = 4 supersymmetry. Suddenly,

the idea of duality had been elevated to a general principle which could be applied to all string

theories in any number of dimensions where previously, the idea of duality was only an isolated set

of conjectures. These results led to the increasing prominence of weak/strong coupling duality.
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String dualities now play a central role in modern string theory research [2,4–6]. Since the term

duality is used in many contexts throughout various fields in physics, it is necessary to clarify

what we mean by it here. A duality is a map, which is often invertible1, between two theories

which sends states in one theory to states in the other theory. At the same time, interactions,

amplitudes, and global symmetries are usually preserved [7]. The two theories that are found to

be dual may be thought of as being physically equivalent. Dualities are particularly important

as they are used to map difficult problems into simpler ones, which we may have more chance

of solving. Initially, five consistent superstring theories in 10-dimensions were known. These

were the type I, two type II, and two heterotic string theories. Additionally, there is also an

11-dimensional theory known as M-theory. The different string theories are distinguished from

each other by the number (and kind) of supersymmetries and also by the various worldsheet

topologies permitted (i.e. oriented versus unoriented). Although the five string theories appear

to be very different when dealt with in the weak-coupling regime, we now know that they are all

related to each other by one of the known string dualities. The connection between the different

theories is known as the ‘web of string dualities’, as seen in Figure 1.

Figure 1: The web of string dualities [8] where Type I string theory is related to type II string
theory via a bosonic T-duality.

In this thesis, our focus is on one particular string duality called T-duality and its many facets.

In general, it relates two theories with different spacetime geometries. The two theories are

considered to be equivalent in the sense that all observable quantities in one description are

identified with observable quantities in the dual description. T-duality differs from other du-

alities in that it does not mention the exchange between weak and strong coupling of the two

1As is the case for Abelian T-duality, however, this is not true for non-Abelian T-duality
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dual theories. However, the AdS/CFT correspondence which was discovered two decades ago,

is a duality which precisely deals with the weak/strong coupling concept described earlier. The

AdS/CFT correspondence (or gauge/gravity du- ality) relates a quantum field theory and grav-

ity. For example, this correspondence is well understood in the case of the equivalence between

N = 4 super Yang-Mills and type IIB strings on AdS5×S5 [6]. Put another way, the correspon-

dence relates the quantum physics of strongly correlated many-body systems to the classical

dynamics of gravity in one dimension higher [9].

In this context, type IIA and type IIB string theories are related by bosonic T-duality, the

two being exchanged with each other under this duality transformation. The same is true

for the two heterotic string theories, E8 × E8 and SO(32). A central idea in string theory,

concerning dualities, is that the strongly coupled limit of any string theory is equivalent to the

weakly coupled limit of some other string theory [1]. All the connections between various string

theories embody this principle. It must be noted that Figure 1 is an oversimplification because

the different limits are characterized by more than just different string theories, but also by the

different topologies of the various compact dimensions [1].

T-duality is one of the oldest and simplest examples of a string duality [10], being a manifestation

of the extended nature of strings. T-duality takes a non-linear σ-model (which may be described

by the Polyakov action) with a target space possessing an isometry and, through the application

of the Buscher procedure [11–13], returns a T-dual σ-model, after gauging the isometry and

integrating out the gauge fields. This worldsheet approach2 to deriving T-duality in string

theory, via the Buscher procedure, is now standard practice. T-duality was discovered as a

symmetry of the effective potential in the compactification associated with radial inversion

symmetry: R ↔ α′/R, where R is the radius of compactification on the spacetime [17, 18].

The Buscher procedure was initially applied to Abelian isometries, but further studies made it

possible to extend the application to non-Abelian isometries and fermionic isometries [19–22,84].

Indeed it is the fermionic generalisation that we are concerned with in this thesis. Motivation

for fermionic T-duality arose when hidden symmetries, not manifest in the Lagrangian, were

discovered in the scattering amplitudes of supersymmetric theories [23]. Soon after this, a

remarkable connection between planar 3 scattering amplitudes and Wilson loops in N = 4

super Yang-Mills was found [26–28], see [29] for a review. The most widely studied example

of the AdS/CFT correspondence [6] is 4-dimensional N = 4 super Yang-Mills and type IIB

superstring theory on AdS5 × S5. The planar limit of super Yang-Mills theory corresponds

to the classical limit in string theory. The scattering amplitudes are described in terms of

scalar one-loop integrals where, in the planar limit, contributing integrals reveal an interesting

property. That is, when they are exchanged for their dual graphs they appear to exhibit a

2Originally worldsheet techniques [14,15] had dominated the scene. Currently the trend is toward the spacetime
approach taking over [16].

3The planar limit [24], for which the t’Hooft coupling λ = g2YMN is held fixed, is the case where only planar
diagrams survive [25]. This occurs because the genus expansion in terms of Feynman diagrams corresponds to
the 1/N expansion.
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novel, non-trivial conformal symmetry, called dual conformal symmetry [30,31]. Originally, this

symmetry showed up in the perturbative computations explored in [32], though soon afterwards

dual conformal symmetry was found in next to next to maximally-felicity-violating (next to

MHV) amplitudes [31], where it was then extended to full dual superconformal symmetry.

Ordinary conformal symmetry in the T-dual model is the dual conformal symmetry in the

original model. To make sense of their relationship we note that dual conformal symmetry of

scattering amplitudes in the gauge theory acts on momenta in much the same way as ordinary

conformal symmetry acts on coordinates in the dual model. Simultaneously, it associates to each

scattering amplitude a string worldsheet in a dual AdS space [33–35]. Berkovits and Maldacena

showed that dual superconformal symmetry may be understood using a T-duality symmetry of

the full superstring theory on AdS5 × S5. The T-duality involves ordinary bosonic T-dualities

(considered in [26]) and a novel set of fermionic T-dualities. Application of these symmetries

returned a background equivalent to AdS5×S5. This resultant background was termed self-dual.

Fermionic T-duality generates new solutions via the identification of commuting fermionic isom-

etry directions built from Killing spinors [22]. We may attribute to the existence of dual super-

conformal symmetry, the self-duality of the superstring σ-model under a sequence of T-duality

transformations [36]. These transformations are of the bosonic and fermionic string modes on

the worldsheet corresponding to some commuting isometries of AdS5×S5, see [21,22] for details.

Simultaneously, self-duality arises as a result of the combined bosonic and fermionic T-dualities

not changing the form or values of the background fields on AdS5× S5, such as the dilaton and

the Ramond-Ramond flux [23]. The dilaton and metric tensor make up the NSNS (Neveau-

Schwarz-Neveau-Schwarz) sector in the RNS (Ramond-Neveau-Schwarz) formalism of type II

supergravity. The dilaton is a scalar field related to the string coupling gs . The RR sector

is made up of the Ramond-Ramond fields, which are differential forms, that act as the higher

dimen- sional generalizations of the fields in Maxwells electromagnetism. Fermionic T-duality,

dual superconformal symmetry and their relationship to each other have been broadly studied

in the context of the maximally supersymmetric AdS5 × S5 background [21–23]. Therefore,

this example is well understood. On the other hand, the fermionic T-duality of σ-models for

superstrings on integrable4 AdS backgrounds possessing less than maximal supersymmetry is

much less understood. Therefore, we are concerned with extending the understanding of this

idea to examples possessing less supersymmetry.

The readers first question may well be: Why would one study the less than maximally supersym-

metric backgrounds? Furthermore, what could we learn? What we know is that the AdS/CFT

correspondence for AdS5/CFT4 with AdS5 × S5 has been studied in great detail. Much has

been learned as a result and shortly after AdS/CFT was discovered ideas started drifting to-

ward unfamiliar territory with regards to this duality [42]. This created a platform for testing

the generality of this idea. To test generality, a good question is: If we know the results for

4As mentioned in the footnote found in [36], the classical integrability of superstrings in AdS backgrounds has
been studied in [37–41].
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maximal supersymmetry, then what can we infer for less supersymmetry? Do we have reason

to believe that what we have observed so far, will hold for less than maximally supersymmetric

cases? Following this logic, it makes sense to choose a background with less supersymmetry, but

perhaps with as little supersymmetry broken as possible. Such a next-to-maximally supersym-

metric background would be AdS4 × CP 3 associated with N = 6 Cherns-Simons (ABJM).

As for the case of N = 4 super Yang-mills, integrability features in ABJM in the planar limit

[42–44] and in string theory on AdS4 ×CP 3 [38,45–47]. There is also an overwhelming amount

of evidence provided by perturbative calculations, that amplitude/Wilson loop duality and dual

superconformal symmetry are present for the AdS4/CFT3 partnership. It is remarkable that

such similarity between AdS5/CFT4 and AdS4/CFT3 cases exist and it is for this reason that

string theorists were led to hope that a self-dual mapping of the geometry AdS4 × CP 3 under

bosonic and fermionic T-duality would account for the observed perturbative symmetries of

the ABJM theory. We have hope because AdS5 × S5 is self-dual under these exact T-duality

transformations. Unfortunately, all attempts to prove self-duality under bosonic and fermionic

T-duality have failed. Failed, despite the important ingredients like integrability remaining

intact. We would like to work out part of the puzzle that is: Why this failure? To this end we

test the self-duality of backgrounds which are integrable (like AdS4 ×CP 3 and AdS5 × S5) but

possess less supersymmetry (like AdS4 × CP 3).

Whether or not self-duality is present in the backgrounds considered herein, we will be one

step closer to understanding the issues surrounding AdS4 × CP 3. Furthermore, we know that

for AdS5 × S5, T-self-duality appears to be a predictor of integrability. This is a brilliantly

useful relationship as self-duality is much simpler to demonstrate than integrability. Therein,

we find more motivation to study AdS4×CP 3. Will this predictor of integrability be completely

ruled out? An interesting question indeed! Therefore, we take it upon ourselves to see how

far the relation (self-duality =⇒ integrability) extends by considering backgrounds with less

than maximal supersymmetry. In summary: Does less supersymmetry account for the failure of

AdS4 × CP 3 being self-dual?
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Overview of Thesis

This thesis is divided into three Parts and further into Chapters. Part I: Introduction and

Overview contains the general introduction to the whole thesis, as well as Chapter 1 and

Chapter 2 which contain the essential mathematical framework required to understand the

work which follows. Part II: Fermionic T-duality of Non-maximally Supersymmetric

Backgrounds contains the body of original work created as part of two collaborations. The

first team is based at the The Laboratory for Quantum Gravity & Strings at the University of

Cape Town.

Chapter 1 provides an introduction to bosonic T-duality. We discuss some historical features to

provide context and then go on to derive the Buscher rules. Two cases are examined: the original

Abelian T-duality and its generalisation to non-Abelian isometries. We also consider generalised

geometry and the O(D,D) group which encompasses Abelian T-duality transformations.

Chapter 2 introduces fermionic T-duality, the fermionic generalisation of ordinary T-duality.

It is this idea which forms the basis of this thesis. We discuss its properties, its differences

compared to ordinary T-duality and then go on to derive the Buscher procedure for fermionic

isometries. A general prescription for carrying out this procedure is also given.

Chapter 3 considers the self-duality of the backgrounds AdS2×S2×T 6 and AdSd×Sd+×Sd−×
T 10−3d for d = 2, 3. We use the Buscher procedure and work at the level of the supergravity

fields to show self-duality. This approach is very useful for seeing how the Ramond-Ramond

fields transform explicitly. After studying particular cases we end with a general argument which

pulls the ideas in this chapter together. We start in type IIA string theory, although we can

easily arrive at a type IIB theory through a bosonic T-duality.

Chapter 4 deals with supercoset σ-models. We verify the self-duality of such models on AdSd×
Sd backgrounds for d = 5 under combined bosonic and fermionic T-dualities without fixing κ-

symmetry gauge.

Chapter 5 We prove that the exceptional backgrounds AdSd×Sd+×Sd− for d = 2, 3 are self-dual.

This approach is to be contrasted with the methods in Chapter 3.
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Chapter 1

Introductory Bosonic T-duality

1.1 Introduction

The string theories that we are interested in studying are described by non-linear σ-models.

These tell us how to embed a 2-dimensional manifold into a target spacetime, the goal being

to embed the manifold into a spacetime of physical interest. This 2-dimensional manifold is

called the worldsheet which is the natural generalization of the worldline for a particle. The

worldsheet is the minimal surface interpolating between the given initial and final configurations

of the string. The 1-dimensional extended nature of the string has some interesting consequences.

In particular, we are interested in the unique duality symmetry called target space duality, or

just T-duality 1. Duality symmetries provide a one-to-one correspondence (or map) between

two different systems. This map furnishes a dictionary which allows us to translate between

the two theories in a precise way. Often, through this dictionary we are able to map difficult

problems into easy ones, and vice versa 2. This chapter deals with bosonic T-duality which is

the original form of this duality symmetry. Interest in bosonic T-duality has been revived due to

the discovery of its cousin, fermionic T-duality [48], to be explored in the following chapter. The

bosonic Neveu-Schwarz (NS) sector is the massless sector common to all types of string theory.

It contains a symmetric 2-form tensor field G called the metric, an antisymmetric 2-form tensor

field B called the Kalb-Ramond field and the scalar field Φ called the dilaton. The B field is a

higher rank tensor analogue of a gauge field. The dilaton is related to the string coupling gs as

follows

gs = exp(〈Φ〉)
1The ‘T’ also stands for toroidal. A compactification is toroidal if the compact space is a torus.
2Note that symmetries always operate within the same system, leading to conservation laws which simplify

problems greatly, but they are quite different from dualities in that they do not map difficult problems into easy
ones. Instead, symmetries simplify difficult problems by applying constraints to the possible forms of the answer.
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where 〈Φ〉 is the vacuum expectation value of Φ. The coupling is a dynamical variable in string

theory. T-duality, for closed strings, relates small distance scales to large distance scales. It

is also crucial to the understanding of D-branes, which arise in open string theory [49]. An

important point to mention is that T-duality maps R→ 1/R and consequently it is the winding

of strings that is crucial 3. Point particles are 0-dimensional and thus cannot possess winding

modes. Thus it is this extended nature of strings which exposes new properties such as T-duality.

This chapter introduces bosonic T-duality in the Abelian and non-Abelian contexts. We place

emphasis on closed string theory throughout this thesis.

1.2 Abelian T-Duality

Begin by considering a closed bosonic string 4 which moves in the background S1 ×R1,24. This

means that the spacetime is compactified along one direction, i.e. the S1. This circle has a

radius R. The coordinates X describe the embedding of the worldsheet into spacetime, that is,

our coordinates are parametrised by the worldsheet coordinates (τ, σ), much like the worldline

is parametrized by proper time. Specifically, the circle compactification amounts to singling out

one direction, say X1(τ, σ), which is compact. Here τ is the time on the worldsheet and σ is

the circular, periodic direction along the closed string. This compactification changes the string

dynamics in two important ways [51]. Firstly, the spatial momentum, p1 , may no longer assume

any value. It is now quantized:

p1 =
n

R
, n ∈ Z.

Secondly, the boundary conditions for the mode expansion of X become more general after

compactification. As a result, we are able to move around the string whilst relaxing the condition

X(τ, σ + 2π) = X(τ, σ) to X1(τ, σ + 2π) = X1(τ, σ) + 2πmR, where m ∈ Z and we have an

isometry along the X1-th direction. Here the integer m tells you how many times the string

winds around the compact direction, S1. Naturally, m is called the winding number, that

is, the number of times X1 (the compact direction) needs to be circled in order to return to

the starting point. This winding term is a uniquely stringy phenomenon. To find the energy

spectrum, consider the periodic field X1, which has the following mode expansion

X1(τ, σ) = x1 +
α′n

R
τ +mRσ + oscillator modes,

incorporating both quantized momentum and the possibility of winding number. The centre

of mass for the system is given by x1 + αRnτ . Start with a simple non-linear σ- model,

3Here 1/R is the radius of the dual background in terms of the radius R of the original background.
4The worldsheet approach, in a general framework, has been studied for closed bosonic strings in [50].
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S(G = δ,B = 0), whose dynamics is governed by a wave equation. Here δ is the Kronecker-delta

and we have a constant dilaton. The wave equation is much simpler to solve if the coordinates

are split into left- and right-moving modes:

X1(σ, τ) = X1
L(σ+) +X1

R(σ−)

where

X1
L(σ+) =

1

2
x1 +

1

2
α′pLσ

+ + i

√
α′

2

∑
n6=0

1

n
α̃1
n exp(−inσ+)

X1
R(σ−) =

1

2
x1 +

1

2
α′pRσ

− + i

√
α′

2

∑
n 6=0

1

n
α1
n exp(−inσ−)

and α′ is the square of the fundamental string scale, ls . The Fourier modes α̃1
n and α1

n act as

creation and annihilation operators respectively. The momenta are given by

pL =
n

R
+
mR

α′
, pR =

n

R
− mR

α′

with σ± = τ ± σ. Finally, consider the mass spectrum, calculated using

M2 =
25∑
µ=0

pµp
µ.

Then the mass squared of the (N, Ñ) excited state is given by [51]

M2 =
n2

R2
+
m2R2

α′2
+

2

α′
(N + Ñ − 2), (1.1)

where N and Ñ are the number operators for left-moving and right-moving oscillation modes

of the string, respectively. The first term in (1.1) tells us that a string with n > 0 units of

momentum around the compact direction, X1 , contributes n/R to its mass. The second term

says that a string winding m > 0 times around the compact direction picks up a contribution

of 2πmRT to its mass, where

T =
1

2πα′
.

Notice that the spectrum (1.1) is invariant under the following transformation

m↔ n, R↔ α′

R
.

Thus, the strings compactified on circles with radii R and αR are T-dual, and have identical

mass spectra. This is called radial inversion symmetry. The precise mapping is given by

X1
R ↔ −X1

R, X1
L ↔ X1

L.

This extends the symmetry of the spectrum to a symmetry of the whole theory by reflecting 5 the

5We actually mean parity reflection here. In non-flat backgrounds possessing an isometry, T-duality does not
reduce to a parity transformation any longer, which acts on right-moving (or left-moving) worldsheet variables
alone. Instead, in the general case, T-duality acts as a canonical transformation affecting both the left- and



CHAPTER 1. INTRODUCTORY BOSONIC T-DUALITY 11

right-moving co-ordinate and leaving the left-moving part invariant 6. The above procedure also

applies to toroidal compactifications [56], specifically to Narain compact-ifications [57], leading

to the T-duality group O(D,D,Z). We can think of this group as follows, consider the group

O(2D) which has parity and rotations of 2D coordinates. Then the group O(D,D) results from

still maintaining parity, but letting D coordinates in the metric acquire negative signs. Then the

object preserved is the metric with an equal number of negative coordinates as positive. This

describes a double space where all D coordinates are doubled, mimicking a string theory with

all dimensions being compact 7.

Transformation of Ramond-Ramond Fields

Up till this point, we have been discussing 26-dimensional bosonic string theory. Now we concen-

trate on the type II 10-dimensional superstring theories. In addition to the NS sector, superstring

theory also contains a Ramond-Ramond or RR sector, which contains fields which are differen-

tial forms. These fields exist in the 10D spacetime of type II supergravity which is the classical

limit of type II string theory. The RR p-forms generalize Maxwell’s electromagnetism. The flux

transformations for the RR fields can be found in [52]. We start by constructing a poly-form

composed of RR forms contracted with Γ-matrices 8. For a IIA theory we have even fluxes:

P =
eΦ

2

5∑
n=0

/F 2n, (1.2)

where /F p = 1
p!Γµ1...µpF

µ1...µp
p and the fluxes are contracted with the 10-dimensional Γ-matrices.

For a IIB theory we take all the odd fluxes:

P =
eΦ

2

4∑
n=0

/F 2n+1. (1.3)

After T-dualising, the left and right moving modes couple to two distinct sets of vielbeins.

However, as a result of these vielbeins describing precisely the same geometries, we may relate

them by a Lorentz transformation, Λ. This Λ is used to define an action on spinors parametrized

by the matrix Ω satisfying [58]

Ω−1ΓaΩ = ΛabΓ
b.

For SU(2) isometries this is solved by

Ω =
α′√
G99

Γ11Γ9,

right-movers on the worldsheet [52–55].
6This reflection applies to fermionic co-ordinates for the superstring [56] as well. Particularly, reflection of the

right-moving fermion in the compact direction causes a change in chirality resulting in type IIA and type IIB
superstring theories being interchanged.

7See the box titled “T-duality in Field Theory” for more information.
8See Appendix A for conventions.
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with Γ11 being the 10-dimensional chirality operator. Then we obtain the dual fluxes through

the inversion of Ω. They are related to the original fluxes as follows

P̃ = P · Ω−1.

1.2.1 The Buscher Rules

String theory backgrounds are described by both their metric and Kalb-Ramond field, therefore

in what follows we refer to (G,B) as the background. The action of T-duality re-lates the

backgrounds (G,B) and (g, b), which are completely different, using the Buscher rules [12, 13].

Backgrounds related in this way are said to describe the same physics. That is, S(G,B) and

S(g, b) give rise to identical theories, furthermore they give rise to the same quantum theory

[59]. This may be illustrated by constructing an intermediate action obtained by gauging the

isometries 9. That is, we make the global symmetry a local symmetry through the introduction

of a gauge field and the replacement of ordinary derivatives by covariant derivatives. The σ-

model is described by the Polyakov action for a bosonic string [60] in conformal gauge. Moving

to conformal gauge involves selecting coordinates for which the metric becomes diagonal. It is

given by

S =

∫
d2z[Gmn(X) +Bmn(X)]∂Xm∂̄Xn

and written in terms of the complex worldsheet co-ordinate z = 1√
2
(τ + iσ). From the 2-

dimensional worldsheet perspective the fields Xm are bosons while G and B are field dependent

couplings. From the spacetime perspective, Xm are the co-ordinates of spacetime parametrized

by the worldsheet co-ordinates. We choose co-ordinates {X1, Xi} for i > 1 in such a way that

the symmetry acts by shifting along the X1-direction only. The X1-direction is special because

it is compact and it is the direction in which our isometry acts. Then we may write

S′ =

∫
d2z[G11AĀ+ L1iA∂̄X

i + Li1∂X
iĀ+ Lij∂X

i∂̄Xj + X̃1(∂Ā− ∂̄A)]

where Lmn = Gmn + Bmn , and the background fields are all independent of X1. Note the

replacement

(∂X1, ∂̄X1)→ (A, Ā) (1.4)

where (A, Ā) forms the auxiliary 10 gauge field on the worldsheet. We may view this replacement

as gauging the shift symmetry of the original σ-model by a minimal coupling to the gauge field

A [10]:

∂Xi → DXi = ∂Xi +A

9Isometries occur whenever the action S(G,B) is invariant under spacetime diffeomorphisms in a direction
which has a global symmetry from the 2-dimensional worldsheet perspective.

10An auxiliary field does not contain any dynamics and therefore does not contribute to the degrees of freedom
present in the theory. For ordinary fields, when we solve the equations of motion, the degrees of freedom are
the labels which parametrize our solution. That is, they are the initial conditions. However, when solving the
equations of motion for the auxiliary field A, we find algebraic equations, which are not integrated, and therefore
there are no initial conditions which need to be specified.
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for i > 1. The last term in S′ contains the Lagrange multiplier X̃1 , whose purpose is to impose

the constraint F = dA = 0. The result is a gauged non-linear σ-model S(g, b;A, X̃1). To return

to the original model, the Lagrange multiplier X̃1 must be integrated out, which takes us back to

the original theory S(G,B). The result being the reversal of the arrow in (1.4), and recovering

the initial σ-model. However, integrating out A using the gauge field equations:

A =G−1
11 (∂X̃1 − L1

i ∂X
i),

Ā =−G−1
11 (∂̄X̃1 − L1

i ∂̄X
i),

returns a different theory. These solutions tell you that A and Ā are determined as soon as you

specify the X’s. It is the σ-model S(G,B) written in terms of new background fields 11. This is

the dual theory with action

S′′ =

∫
d2z[g̃mn(X) + b̃mn(X)]∂ym∂̄yn

written in terms of the co-ordinates ym = {X̃1, Xi}. The Lagrange multiplier represents the

dual co-ordinate, the direction for which the dual theory is isometric. The dual fields are related

to the original fields, as derived by Buscher

g̃11 =(G11)−1, g̃1i = (G11)−1B1i, b̃1i = −(G11)−1G1i

g̃ij =Gij − (G11)−1(Gi1G1j +Bi1B1j) (1.5)

b̃ij =Bij − (G11)−1(Gi1B1j +Bi1G1j).

This method works in the case of abelian isometries 12 [56]. Through recent developments, many

derivations of the transformation rules for Ramond-Ramond fields [52,63–67] exist. We will first

consider such rules in the context of T-duality described by an O(D,D) symmetry group.

11This can also be done using a Hamiltonian approach through canonical transformations [54].
12Global issues were first raised in [59] and are subsequently discussed in [61] and [62].
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A Note on Open String T-duality13

As we have seen, in the presence of a compact dimension, closed strings exhibit fundamentally

new states due to their extended nature: that is, closed strings are able to wrap around the

compact dimension. This winding makes it impossible to contract closed strings to a point. Since

open string endpoints on a space-filling D25-brane are allowed to move freely, open strings can

indeed always be contracted to a point. Compared to closed strings, open strings do not exhibit

any fundamentally new states in the presence of a compact dimension. Furthermore, the string

spectrum for an open string on a space-filling D25-brane with radius of compactification R and

a related open string on a D25-brane with radius of compactification R̃ = R/α′, do not coincide.

This implies that open strings on D25-branes are able to distinguish between the two different

compactifications. To preserve T-duality in the presence of open strings, we find that T-duality

relates a spacetime with radius R and a D25-brane to a spacetime with radius R̃ = R/α′ and a

D24-brane. In the dual space, X1 is the Dirichlet direction of the D24-brane. We set X1 = 0

to be the position of the brane along the compact direction. All open string endpoints are then

held attached to points with X1 = 0 in the dual direction. Because the string endpoints are

kept fixed, new open string configurations exist that prevent open strings from being contracted

away.

Therefore, an open string stretching from X1 = 0 to X1 = 2πR winds around the compact

direction once. Open strings may wind around the compact direction any number of times just

like closed strings, moreover, open strings may even resemble closed strings, however they are

not closed since the open string endpoints do not need to coincide.

1.2.2 Generalised Geometry

The fundamental theory of relativity tells us that physics is the same for all observers, that is,

physics is co-ordinate invariant. This idea is best formulated mathematically using differential

geometry. One considers a tangent bundle 14 to the given spacetime manifold, equipped with a

metric tensor. It is the metric tensor which acts as the dynamical object in the theory, ‘encoding’

the physical content. The Riemannian metric of general relativity provides a measure of distance

in this theory. But what about theories requiring a metric and an antisymmetric 2-form to define

their background? The answer is, we expect that these two fields should be treated equally and

therefore combined to form the dynamical object. This is done by developing an associated

geometrical theory, using the O(D,D) structure group. This is the generalized tangent bundle

13This information box is an excerpt from [?], Chapter 18.
14A tangent bundle of a differential manifold M is a manifold TM , which assembles all the tangent vectors in

M .
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described in the context of generalized geometry [69–72]. The dynamical object is now given by

the generalized metric, M :

M =

[
G−BG−1B −BG−1

G−1B G−1

]
.

The generalized dilaton, d, is

e−2d = e−2Φ
√

detG.

The generalized metric provides the most efficient description of the action of T-duality on

the background. In this set-up, T-duality is generated by O(D,D) transformations with the

following action

M →M ′ = T −1MT

with d remaining invariant. Then, T-duality is implemented using the following matrix [73]

T-duality in the kth direction : TT (k) =

[
1− 1k 1k

1k 1− 1k

]
,

where 1k is the D × D-matrix with 1 as the kth diagonal entry. This vector ensures we are

dualising along the chosen direction, the kth direction. Dualising along several co-ordinate

directions generalizes naturally to Tv1Tv2 = Tv1+v2. The dual metric G′ is then read off from

the ‘(G−1)’ term which corresponds to the matrix in the 4th quadrant of M ′. The change in the

dilaton is given by

∆Φ =
1

4
log

detG′

detG
.

T-duality in Field Theory

T-duality relies on the extended nature of strings to wrap around compact dimensions. The

existence of winding modes resulting from such wrappings, and also the momentum modes

underlie T-duality. The result of the action of T-duality being the creation of a connection

between the physics (of strings) defined on geometrically distinct backgrounds. Double Field

Theory15 [77–79] tries to incorporate T-duality as a symmetry of field theory. At first the

idea does seem bizarre, given that T-duality is a unique symmetry of strings, and that field

theory describes 0-dimensional particles which are unable to wrap around compact dimensions.

Therefore it is quite natural to assume that if we were to incorporate a T-duality symmetry

in field theory, we should take into account information about the winding modes, somehow.

To do this, we need to assign more degrees of freedom to our particles, accounting for their

inability to reproduce stringy-like winding properties [74]. Double Field Theory incorporates

these new degrees of freedom by doubling the space of co-ordinates. Thus ordinary and winding

co-ordinates are considered to be the co-ordinates of a doubled manifold16.

15For a review, consult [74–76].
16For any manifold M with a boundary ∂M , we may define its double to be the manifold obtained by gluing

two copies of M together along their common boundary [80]. This does not mean that the double is always closed.
In fact, this concept makes sense for any manifold. However, when discussing doubles, one is primarily referring
to manifolds M which are compact (and thus closed) with non-empty boundaries ∂M .
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Effects on Ramond-Ramond Fields

Hassan [53], and later Fukuma et al [81] described the changes made to the RR fields due to the

action of T-duality by expressing the fields as a set of fermionic (or grassmannian) creation and

annihilation operators, ψm and ψm respectively. These are combined to arrive at the potentials

C(p). They are then given by

|C〉 =
∑
p

1

p!
C(p)
mn...pψ

mψn...ψp|0〉,

with corresponding algebra

{ψm, ψn} = δnm, {ψm, ψn} = {ψm, ψn} = 0.

The annihilation operators ψm annihilate the vacuum |0〉. T-duality acting along the mth direc-

tion may be expressed as having the following operator

Tm = ψm + ψm. (1.6)

acting on the vacuum |0〉. Note that different Tm anti-commute, so the sign of the final C(p)

after T-dualising depends on the ordering, although this has no physical effect. The following

subtleties apply

1. When considering a non-trivial dilaton, we ought to apply the above rules to eΦdC(p)

instead [22,23]. This is also mentioned in the last paragraph of [81].

2. A T-duality along the time direction exchanges real and imaginary fluxes [83], therefore

(1.6) applies for m 6= 0 and we define T0 = i(ψ0 + ψ0).

3. For the case when the B-field is non-zero, these operators apply to the modified potential

D, introduced in [81], rather than the potential C.

We may express the effects on the RR-fields in another way, as Hassan did in [52]. Here we

may act directly on the fields F (p) . Then performing a duality in the x9-direction, for example,

returns new fluxes

F
(p)′

9no...q = F (p−1)
no...q −

p− 1

G99
G9[n F

(p−1)
9o...q],

F (p)′
mn...q = F

(p+1)
9mn...q − pB9[n F

(p)′

o...q]

Since all our cases deal with diagonal G and a B which is zero, the second terms in each equation

above vanish. This approach also requires one to remember to include a factor of i when dualising

along time [83]. Appropriate factors also need to be inserted when the dilaton is non-trivial.
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1.3 Non-Abelian T-duality

As we have already discussed, T-duality is an equivalence between string theories propa- gating

on two different spacetime geometries which contain some isometries [19]. Simply put, it de-

scribes strings on a circle of radius R and those strings on a circle of radius α′/R as equivalent.

In general, a map, given by the Buscher rules, is provided by the action of T-duality. This

map relates one solution of supergravity to another. The Buscher procedure can naturally be

generalized to include target spaces equipped with a non-Abelian isometry group H. For such

a case, the Buscher procedure is followed almost exactly, except that the gauge fields 17 now

take values in the algebra of H. This also produces a map from one solution of supergravity to

another, as in the Abelian case. This acts as a solution generating technique for supergravity

theories.

This natural generalisation was proposed in [84] (see [85] for earlier work). Although some

attention was paid to this new duality in [86, 87], progress was impeded until it was worked

out how to embed this duality symmetry in supergravity. This meant knowing the full trans-

formation, including that of the RR fields, which was later found by Sfetsos and Thompson

in [88]. Presently, we are at the stage where much more work and development has been done

and progress has been made toward our understanding of non-Abelian T-duality [19,19,90–93],

though there are still many things which remain a mystery. For example, non-Abelian T-duality

might be extended to an exact duality of the full superstring theory, but at the moment this

is something which remains un- clear. Although it appears that the dualisation procedure for

Abelian and non-Abelian T-dualities are very similar, we list two important differences:

1. The isometry of the initial target space geometry is destroyed by non-Abelian T- duality,

even if only partially. Furthermore, the supersymmetry of the model may be potentially

destroyed too 18.

2. Global issues arise as a result of applying the Buscher procedure to worldsheets of

higher genera, that is, beyond tree level. Therefore, non-Abelian T-duality is not an exact

(or full) symmetry of string perturbation theory, existing only as a tree-level symmetry.

Earlier work on non-Abelian T-duality for cases involving purely Neveu-Schwarz backgrounds

can be found in [84,86,87,94–97]. After the publication of [88], there was a resurgence of inter-

est in the subject of non-Abelian T-duality, leading to the extension of the Buscher procedure

to geometries containing RR fields in addition to NSNS fields. Furthermore, non-Abelian T-

duality was originally studied in the context of backgrounds possessing SU(2) isometries. Then,

performing non-Abelian T-duality on the SU(2) isometry group within the sphere of type IIB

17The gauge field is a 1-form with values in the Lie algebra associated to the gauged isometry group [56].
18It is possible to recover this lost isometry as a non-local symmetry of the σ-model. The corresponding

σ-models are canonically equivalent [84].
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AdS5 × S5 causes something interesting to occur. The action of T-duality produces a geome-

try which is a solution of type IIA supergravity [88]. Consider the background containing an

SO(4) = SU(2)LSU(2)R isometry, then the round S3 metric is written as

ds2 = dθ2 + dφ2 + 2 cos θdφdψ + dψ2.

Next, perform the T-duality with respect to one of the SU(2) isometries, say the left 19, then

we will find a geometry that interpolates between R× S2 and R3 with the following metric

d̂s
2

= dr2 +
r2

1 + r2
(dθ2 + sin2 θdφ2).

However, there is also an NSNS antisymmetric 2-form field and scalar dilaton present for the

dual geometry:

B̂ =
r3

1 + r2
vol(S2), Φ̂ = −1

2
ln(1 + r2).

We are also interested in how the RR fields transform. Suppose that the initial geometry

considered above is supported by a RR 3-form

F3 = vol(S3).

Dual fluxes are extracted using the following equation

eΦ̂ /̂F = /F .Ω−1,

where the slashed terms represent the RR poly-form made up of the sum of the RR forms

contracted with γ-matrices: /F p = 1
p!Γµ1...µpF

µ1...µp , to form a bispinor. The matrix Ω’s inverse

is key to the transformation procedure and given by

Ω−1 =
1√

1 + r2
(−Γ123 + rΓr).

From this we may determine that the dual geometry contains a 0-form and a 2-form:

F0 = 1, F2 =
r3

1 + r2
vol(S2).

where the 0-form, F0 , is called the Romans mass 20 [19]. When this dual geometry is embedded

into a type IIA supergravity background, a solution of massive IIA supergravity is found. A

massive IIA supergravity results whenever the Romans mass is non-zero. Notice that the type of

string theory has changed from type IIB to IIA. The fact that the isometry group being dualised

has an odd dimension means that the supergravity will change in type. For even-dimensional

isometry groups, the supergravity type remains invariant.

19Note that if, instead, we performed T-duality with respect to the right SU(2), the metric and background
would remain unchanged. This is because we are dealing with type IIA string theory, which is parity invariant,
and all that relates the two SU(2)’s is a parity transformation.

20The Romans mass was originally introduced as a ‘cosmological constant’ by Romans in 1986. However it was
later understood to be an RR flux to be treated as any of the other RR fluxes, all of which are mixed by T-duality.
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1.3.1 Some Technical Details

As mentioned earlier, the most well-studied version of non-Abelian T-duality exists for back-

grounds having an SU(2) isometry. Considering such a background we may write the metric

as [88]

ds2 = Gµν(x)dxµdxν + 2Gµi(x)dxµLi +
1

2
gij(x)LiLj

where µ = 1, 2, ..., 7 and i, j = 0, 8, 9. The Li’s are the SU(2) Maurer-Cartan forms 21

Li± = −iTr(tig−1∂±g).

where ti = 1√
2
σi are the SU(2) generators. The group element is given by

g = e
i
2
φσ3 · e

i
2
θσ2 · e

i
2
ψσ3 ,

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π. It is assumed that the NS sector also comprises

an antisymmetric 2-form

B = Bµν(x)dxµ ∧ dxν +Bµi(x)dxµ ∧ Li +
1

2
bij(x)Li ∧ Lj

and dilaton

Φ = Φ(x).

Note that all the dependence on the SU(2) Euler angles θ, φ and ψ is contained in the Maurer-

Cartan 1-forms. All remaining data is dependent on the fields xµ, called spectator fields.

NS Sector

The Lagrangian density for the NS sector fields is given by

L = Qµν∂+X
µ∂−X

ν +Qµi∂+X
µLi− +QiµL

i
+∂−X

µ + EijL
i
+L

j
−,

where

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi, Qiµ = Giµ +Biµ, Eij = gij + bij ,

and µ = 1, 2, ..., 7 and i, j = 0, 8, 9. Non-Abelian T-duality is performed through the replacement

of ordinary derivatives with covariant derivatives, as follows

∂±g → D±g = ∂±g −A±g,

followed by adding a Lagrange multiplier term to ensure that we have a flat connection (which

further ensures that there is no curvature)

−iTr(vF±), F± = ∂+A− − ∂−A+ − [A+, A−].

21For group theory conventions, see Appendix A.
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where the vi’s are Lagrange multipliers. There is more than one Lagrange multiplier present

when considering a non-Abelian theory. This is because instead of having a single field, we now

have a matrix of fields. Under this transformation, the spectator fields, xµ remain inert. Partial

integration results in the Lagrange multiplier taking the form

Tr(i∂+vA− − i∂−vA+ −A+fA−), fij = fkijvk.

At this stage, we have managed to introduce three new degrees of freedom. To eliminate three

of the variables, we need to fix a gauge. The simplest choice available to us is g = 1. Then

integrate out the gauge fields to get

Ai+ = iM−1
ij (∂+vj +Qµj∂+Xµ), Ai− = −iM−1

ij (∂−vj −Qjµ∂µX), (1.7)

where the matrix M is given by

Mij = Eij + fij .

Then substituting (1.7) back into the original Lagrangian yields the dual Lagrangian

L̂ = Qµν∂+X
µ∂−X

ν + (∂+vi + ∂+X
µQµi)M

−1
ij (∂−vj −Qjµ∂−Xµ). (1.8)

The vi’s now take on the role of dual co-ordinates, just like the Lagrange multiplier in the

Abelian case. The background fields of the NS sector for the T-dual theory may be read off

from (1.8) as

Q̂µν =Qµν −QµiM−1
ij Qjν , Êij = M−1

ij ,

Q̂µi =QµjM
−1
ji , Q̂iµ = −M−1

ij Qjµ.

For the case of Abelian T-duality, the dilaton receives a contribution at the quantum level. The

same applies to non-Abelian T-duality with the following contribution

Φ̂(x, v) = Φ(x)− 1

2
ln(detM).

Note that it is the inverse of the matrix M above which determines the dual geometry.

RR Sector

The transformation rules for the RR fields were first discovered in the context of Abelian T-

duality in [63] for supergravity theories in 9 spatial dimensions [88]. These rules were arrived

at by considering the action of T-duality on spinors. These rules were written down for the

spacetime perspective in [52, 98], and for the Green-Schwarz string in [64, 65]. The pure spinor

formalism was written down in [67, 99]. The current method [100] combines the RR fields

with their Hodge duals 22 to form the bispinor as in equations (1.2) and (1.3). Then the non-

Abelian T-dual theory is obtained by multiplication with Ω−1 . When transforming a type IIB

22See Appendix A for conventions.
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supergravity into a massive type IIA supergravity, we may obtain the rules for the transformation

of the RR fluxes by comparing both sides of [88]

P̂ = P.Ω−1.

For transformations from massive IIA to IIB, one simply switches the roles of P and P̂ .

1.4 Summary and Conclusion

Dualities provide a unifying link between the different string theories. In particular bosonic

T-duality relates type IIA supergravity to type IIB supergravity. In its sim- plest form, we have

shown that bosonic T-duality is an equivalence between a theory with a large spacetime radius

and a theory with a small spacetime radius. A powerful approach used to derive the Buscher

rules, which form a recipe for performing bosonic T-duality, is the path integral approach. This

procedure comprises three main steps:

1. Begin with the string σ-model describing some spacetime and gauge a U(1) isometry

of this spacetime (or SU(2) in the case of non-Abelian T-duality).

2. Using a flat connection for this gauge field, we insert a Lagrange multiplier.

3. Integrate by parts to obtain an action with a non-dynamical gauge field that may be

eliminated by its equations of motion, to produce the T-dual σ-model.

In summary, given a non-linear σ-model with a target space that admits an isometry, the Buscher

procedure gives us a well defined recipe for obtaining a T-dual σ-model. There are some sub-

tleties that occur when trying to prove that the Buscher procedure holds on worldsheets of higher

genera [10,59]. Abelian T-duality Buscher rules are only valid to the lowest order in string per-

turbation theory, as is true for the non-Abelian case. However, by gauging an Abelian isometry,

the duality may be extended to higher genus worldsheets. In this case, the shift symmetry has

to be along a compact coordinate [59,101]. The full set of bosonic T-duality transformations is

given by the non-Abelian group SO(D,D,Z). It is generated by T-dualities on all D circles, lin-

ear redefinitions of axes and discrete shifts of the Kalb-Ramond field B [49]. Naturally, we may

wonder about the role that non-Abelian T-duality plays in the gauge/string correspondence. To

answer this question, Sfetsos and Thompson [88] studied the dualisation of AdS5 × S5 with an

SU(2) isometry group. Non-Abelian T-duality studied in this context has many efforts, which

may be found in [19, 90, 102–104] and references therein. A far more thorough review of non-

Abelian T-duality can be found in [99]. It is important to stress that Abelian T-duality is an

exact duality of superstring theory whereas it is not known whether non-Abelian T-duality is

a duality. However, it has proven useful as a solution generating technique, which acts at the

level of the supergravity. The take home idea is that bosonic T-duality may be used to generate
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new solutions of supergravity. This is very useful for mapping very distinct geometries to one

another.
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Chapter 2

Introductory Fermionic T-Duality

2.1 Introduction

Fermionic T-duality [21,22] is the cousin of bosonic T-duality which extends the idea to a duality

that acts on the whole superspace. Initially, the motivation to study fermionic generalisations

to bosonic T-duality arose as a result of the need to understand dual superconformal symmetry

with regards to scattering amplitudes of the string, as well as trying to understand its connection

to integrability. Dual superconformal symmetry eventually helped show that AdS5 × S5 was

self-dual [21, 22]. This discovery shed light on hidden symmetries in the scattering amplitudes

of supersymmetric theories like N = 4 super Yang-Mills [26–28], and suddenly there was a great

desire to explain these symmetries which fuelled research centred on the topic of fermionic T-

duality. Let us take a step back to recall some of the things that we already know, for context.

We have seen that bosonic T-duality has been crucial in linking the two type II string theories,

and that the prerequisite for this duality transformation is an isometry on the background.

For bosonic T-duality, Buschers procedure tells us to use a shift symmetry of the target space

coordinate, corresponding to the isometry on the target space of the σ-model. Then, we are

able to make some field redefinitions in the σ-model. Classically, the new σ-model is equivalent

to the original σ-model, and both models have identical forms of the action. However, the new

σ-models couplings [101], that is the metric and 2-form NSNS field look different. If the dilaton

transforms as well, then the σ-models are equivalent at the quantum level. Additionally, in the

bosonic case, the transformed background fields are related to the original fields by the Killing

vectors corresponding to the isometry.

The generalisation to target spaces possessing fermionic isometries, or supersymmetries, as

well as isometries, resulted in the duality of tree-level type II string theory called fermionic

T-duality [101]. Under this duality only the RR fields and dilaton transform, leaving the rest

of the NSNS sector (metric and NSNS 2-form) invariant. Analogous to bosonic T-duality,

the transformation of the background supergravity fields are generated by the Killing spinors
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corresponding to the superisometry of the superspace. It was Berkovits and Maldacena [22] and

simultaneously Beisert et. al. [21], who in 2008, managed to generalise the Buscher procedure for

worldsheets with actions invariant under constant shifts of the spacetime fermionic coordinates

θJ , J = 1, ..., n, where n is the number of supersymmetries. The metric and NSNS 2-form

remain invariant and the transformation laws of the RR fields are given in terms of the bispinor

field strength. In type IIA string theory, the bispinor field strength is

Fαβ =
1

2
F (2)
a1a2(Γa1a2)αβ +

1

4!
F (4)
a1...a4(Γa1...a4)αβ,

where the 2-form F (2) and 4-form F (4) are the RR field strengths. In type IIB string theory

the bispinor field strength is1

Fαβ = F (1)
a (Γaσ1) +

1

3
F (3)
a1...a3(Γa1...a3(iσ2))αβ +

1

2 · 5!
F (5)
a1...a5(Γa1...a5σ1)αβ,

where the 1-form F (1), the 3-form F (3) and the 5-form F (5) are the RR field strengths. The

5-form F (5) is also self-dual with respect to the Hodge star operator2. There are important

differences between bosonic T-duality and its fermionic cousin. We will note them here:

1. Fermionic T-duality is not an exact duality symmetry of string theory. The symmetry is

broken at one loop in the string coupling, gs.

2. The transformation laws for the background fields resulting from the fermionic Buscher

procedure are quite different when compared to the bosonic case. Strikingly, the NSNS

sector is left untouched save the dilaton, which picks up the following additive correction

φ′ = φ+
1

2
logC,

where C is determined by the Killing spinors (ε, ε̂), which parametrize the fermionic isome-

tries. Note that this pair of Killing spinors represents a single supersymmetry.

3. The transformation of the bosonic fields in the RR sector may be written concisely in

terms of the bispinor Fαβ:

eφ
′
F
′αβ = eφFαβ + 16iεαε̂βC−1, (2.1)

where the bispinor3 is found, as before, by contracting all the RR fields in the theory with

1Notice the Pauli matrices present in the IIB case. Type IIB string theory is chiral (left/right asymmetric).
As a result we are dealing with two-component Majorana-Weyl spinors η = (ε, ε̂). Each of the Killing spinors in
the pair have 16-components. Given that we are discussing type IIB string theory the two 16-dimensional Killing
spinors have the same chirality.

2See appendix A for conventions.
3Note that the conventions for the factor in front of the second term on the right hand side of (2.1) differ from

author to author.
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the appropriate antisymmetrized products of Γ-matrices.

4. There is an important new feature which occurs for fermionic transformations. The Killing

spinors need to be complex in order to satisfy the commutativity condition, which will be

discussed below, this ensures that the symmetry we gauge in the Buscher procedure is

Abelian. Therefore, our supersymmetries commute. The consequence is that performing

a fermionic T-duality transformation will result in a complexified solution of supergravity.

5. It is desirable to return to a real background, as we would like to describe physical pro-

cesses, to this end it is essential to apply a bosonic T-duality along a time-like Killing

vector. The returns a real solution with real fluxes. However, this does mean that our

solutions obtained by using fermionic T-duality as a ’solution generating technique’ are

limited to supergravity solutions possessing a time-like Killing vector.

Take note that the transformation law for the dilaton is very similar to the way that the dilaton

changes under a bosonic T-duality with the essential difference being that in the fermionic case,

the sign of the logarithm has changed. This difference turns out to be extremely important for

establishing the exact T-self-duality of the AdS5×S5 background. We will deal with self-duality

later but, simply put, it means that the original background is returned to after a sequence of

bosonic and fermionic T-duality transformations has been applied. When applying bosonic

transformations in order to establish self-duality, we always need to apply an even number. This

occurs because the bosonic transformations swap the type IIA and type IIB backgrounds. Thus,

to return to the same background, an even number of bosonic T-dualities is required.

2.2 The Fermionic Buscher Procedure

As before, we start by considering a σ-model, in this case a Green-Schwarz σ-model on the

whole superspace, depending on both bosonic and fermionic worldsheet variables (xm, θµ). Next,

choose one of the fermionic directions, say θ1, such that the worldsheet action is invariant under

a constant shift of the fermionic variable. This means that

θ1 → θ1 + ρ, xm → xm, θµ̃ → θµ̃, (2.2)

where ρ is a fermionic constant and µ̃ runs over all fermionic degrees of freedom except µ = 1.

These types of backgrounds inherently preserve a supersymmetry [22]. Invariance under (2.2)

implies that θ1 will only appear as derivatives in the action, which is given by

S =

∫
d2z

[
B11(Y )∂θ1∂̄θ1 + L1M (Y )∂θ1∂̄YM + LM1(Y )∂YM ∂̄θ1 + LMN∂Y

M ∂̄Y N
]
,
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where YM = (xm, θµ̃) and M = (m, µ̃) ranges over all indices except for µ = 1. We define

LMN (Y ) = GMN (Y ) + BMN (Y ) where GMN is the graded-symmetric tensor and BMN is the

graded-antisymmetric tensor defined by

GMN = (−1)MNGNM , BMN = −(−1)MNBMN ,

with

(−1)MN =

−1 M, N both fermionic,

+1 Otherwise

where the background fields are contained as components. Once again, we introduce a vector

field (A, Ā), which is composed of fermionic gauge fields. The derivatives are then replaced with

the vector fields as follows:

(∂θ1, ∂̄θ1)→ (A, Ā),

where (A, Ā) forms an auxiliary field on the worldsheet. This replacement is viewed as gauging

the shift symmetry of the original Green-Schwarz σ-model by a minimal coupling to the fermionic

gauge field. If B11(Y ) is non-zero then we may apply the Buscher procedure in order to T-dualize

the σ-model with respect to θ1. Additionally, a Lagrange multiplier term θ̃1 is added to the

action for the purpose of imposing that the vector field is a derivative of a fermionic scalar. The

resulting action is

S =

∫
d2z

[
B11(Y )AĀ+ L1M (Y )A∂̄YM + LM1(Y )∂YM Ā+ LMN∂Y

M ∂̄Y N + θ̃1(∂Ā− ∂̄A)
]
.

To return to the original Green-Schwarz σ-model, the Lagrange multiplier θ̃1, must be integrated

out. This imposes that A = ∂θ1 and Ā = ∂̄θ1. Alternatively, we may integrate out the fermionic

gauge field instead, using the equations of motion for A given by

∂θ̃1 =B11A+ LM1∂Y
M ,

∂̄θ̃1 =B11Ā− (−1)s(M)L1M ∂̄Y
M ,

where the exponent s(M) is zero if M is a bosonic index and one if M is fermionic. This results
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in the T-dualized action

S̃ =

∫
d2z

[
B′11(Y )∂θ̃1∂̄θ̃1 + L′1M (Y )∂θ̃1∂̄YM + L′M1(Y )∂YM ∂̄θ̃1 + L′MN∂Y

M ∂̄Y N
]

where

B′11 =− (B11)−1, L′1M = (B11)−1L1M ,

L′M1 = (B11)−1LM1, L′MN = LMN −
1

B11
L1NLM1.

There is a change induced in the dilaton due to the measure factor coming from the integration

over the fermionic vector field (see [106] to see how the measure factor arises for the case of

integration over a bosonic field). The change is given by

φ′ = φ+
1

2
logB11.

Note that the change in φ as a result of fermionic T-duality has a logarithm with the opposite

sign from that appearing in the change in φ as a result of bosonic T-duality. This is because,

whilst the integration of the vector field has the same formal structure as in the bosonic case,

we are instead integrating over an anticommuting variable, which picks up an additional minus

sign. Fermionic T-duality transformations leave the NSNS fields GMN and BMN invariant, as

mentioned above. Therefore, fermionic T-duality is primarily a transformation acting on the

RR sector. The transformation is written in terms of the bispinor field strength given in (2.1).

Furthermore, the fermionic isometries are assumed to be Abelian [22], so that they satisfy the

following commutativity constraint

εγmε+ ε̂γmε̂ = 0, (2.3)

in type IIB and

ĒΓmE = 0 (2.4)

in type IIA for a Majorana spinor E = ε+ε̂. The two spinors ε and ε̂ are not independent, instead

they are related by the Killing spinor equations and the above constraint. This constraint is

unique to fermionic T-duality and cannot be solved for real spinors, therefore the Killing spinors

need to be artificially complexified, as we will see in the next section. The consequence of this
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is that performing a fermionic T-duality transformation will result in complex RR fields. Once

a pair of Killing spinors satisfying the commutativity condition have been found, the next step

is to calculate the auxiliary scalar field C which is defined as follows

∂mC =iεα(γm)αβε
β − iε̂α̂(γm)α̂β̂ ε̂

β̂ for type IIB,

∂mC =iĒΓmΓ11E for type IIA.

The auxiliary field C is the θ = θ̂ = 0 component of B11. Using the constraint (2.3), we are able

to somewhat simplify the type IIB expression to

∂mC = 2iεγmε. (2.5)

The dilaton can be written in terms of this auxiliary field as follows

φ′ = φ+
1

2
logC, (2.6)

and we recall that the RR fields transform according to

eφ
′
F ′ = eφF +

16

i

ε⊗ ε̂
C

. (2.7)

For the case when multiple fermionic T-dualities are performed, with respect to several su-

persymmetries parametrized by pairs of Killing spinors εi = (εi, ε̂i) with i ∈ 1, ..., n, we may

generalise equations (2.5), (2.6) and (2.7) to

∂mCij = 2iεiγmεj , (2.8)

φ′ = φ+
1

2

n∑
i=1

(logC)ii, (2.9)

eφ
′
F ′ = eφF +

16

i

n∑
i,j=1

(εi ⊗ ε̂j)(C−1)ij . (2.10)

The commutativity condition, for all i, j ∈ 1, .., n, becomes
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εiγmεj + ε̂iγmε̂j = 0. (2.11)

2.3 A Recipe for Fermionic T-duality

Bakhmatov, in his thesis [16], formulated a great recipe for performing fermionic T-duality on

any solution. In this section, we will present this recipe in detail.

Performing Fermionic T-duality

The steps are:

1. Find the Killing spinors of the solution.

2. Choose a complex linear combination of the Killing spinors from the first step, ensuring

that they satisfy the commutativity condition (2.3).

3. Calculate the auxiliary scalar field C, using (2.5).

4. If there are any RR fields existing in the original background, they should be substituted

into

Fαβ = (γµ)αβFµ +
1

3
(γµ1µ2µ3)αβFµ1µ2µ3 +

1

2.5!
(γµ1...µ5)αβFµ1...µ5 . (2.12)

5. One then uses Fαβ, εα, ε̂β and C to calculate the transformed RR background F ′αβ using

(2.7).

6. Use (2.12), but this time use it to find the contributions of F1, F3 and F5 to the transformed

background F ′αβ separately.

A few comments are in order. Type IIA supergravity contains two 16-component, Majorana-

Weyl spinors with opposite chirality. It is convenient to combine the two Majorana-Weyl spinors

into a single 32-component spinor E = (ε, ε̂), and to then work with constraint equations and

the Killing spinor equations in terms of the full 32×32 Γ-matrices. The type IIB case is handled

differently. Our Killing spinors are, again, ε = (ε, ε̂), but now the two 16-component spinors

have the same chirality. For IIB string theory, we work with constraint equations and the Killing

spinor equations in terms of the 16 × 16 γ-matrices. The fermionic directions along which we

dualise are found from the Majorana-Weyl spinors by creating complex linear combinations of

the Killing spinors found in step 1. The next step is to use the complex Killing spinors to write

down a differential equation (??), which may be integrated to solve for the auxiliary scalar field

C. The bispinor (??) in step 4 contains antisymmetrized products of γ-matrices with the RR
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fields. The single γ-matrix and the product of five γ-matrices end up being symmetric overall.

However, the triple product of γ-matrices is antisymmetric overall. After calculating the new

bispinor F ′αβ in step 5, we encounter the first non-trivial, challenging part of the transformation

in step 6. Here we need to extract the transformed RR fields from the new bispinor. To find the

corresponding 1-form, 3-form and 5-form, we need to separate the matrices occurring in (??)

into symmetric and antisymmetric parts. This done by brute force using Mathematica. Steps 2,

4 and 5 are all automated with Mathematica, since all these equations involve calculations with

many 32× 32 (type IIA) and 16× 16 (type IIB) matrices which are very cumbersome.

2.4 Self-duality of the AdS5 × S5 Background

Before moving on to the study of backgrounds with less than maximal supersymmetry, it is

instructive to review the maximally supersymmetric solution, AdS5 × S5, first. This review

follows the structure in [23].

To show that AdS5 × S5 is self-dual under a sequence of bosonic and fermionic T-dualities, we

choose to perform bosonic T-duality along the (x0, x1, x2, x3)-directions of AdS5 in Poincaré

coordinates. Following this, we perform fermionic T-duality along 8 Poincaré supersymme-

tries [21, 22]. The corresponding Poincaré Killing spinors are those spinors independent of the

boundary coordinates of AdS5. In Poincaré coordinates the metric on the AdS5 space is

ds2(AdS5) =
1

r2
(dxmdxm + dr2),

where m = 0, 1, 2, 3 and r is the radial direction in AdS5. Solving for the Poincaré Killing spinors

η of AdS5 × S5 gives the following solution

η =
1√
r
η̃,

where we have suppressed the angular dependence of the S5 in η̃. We will see this form of the

solution appearing for the less supersymmetric backgrounds in Part II. The AdS5×S5 geometry

has a self-dual4 5-form RR flux and a trivial (constant) dilaton. We may write the flux bispinor

(which is used in the fermionic Buscher procedure) as [22]

eφFαβ̂ = (γ01234)αβ̂,

4Self-dual with respect to the Hodge star operator defined in the Appendices.
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where 0, 1, 2, 3 correspond to the xm directions and 4 corresponds to the radius of AdS5. The

maximally supersymmetric geometry, AdS5 × S5 , has 32 supersymmetries which are reduced

to 16 by restricting to Poincaré supersymmetries. The commutativity constraint 2.3 further

reduces this number to 8 pairs of complexified Killing spinors corresponding to 8 commuting

fermionic directions. The matrix C can be calculated using 2.5 where upon being inverted it is

used to find the transformed bispinor 2.10. The T-dual bispinor is [21,22]

eφ̃F̃αβ̂ = (iγ4)αβ̂.

Using C again allows us to find the shift in the dilaton

φ̃ = φ+ 4 log r.

To recover the original geometry we still need to perform bosonic T-dualities along the chosen

xm. It is during this process that the difference in sign before the logarithmic term in the

dilaton shifts due to bosonic and fermionic transformations plays a crucial role. Bosonic T-

duality produces a shift ∆φ = −4 log r which undoes the shift caused by fermionic T-duality.

Note, that at this stage we are still left with a complex geometry, meaning that we are not done.

To arrive at the original background we need to perform a timelike T-duality which attaches an

i to all the RR fields [83] and recovers a real solution.

2.5 Summary and Conclusion

The aim of this chapter was to give a brief introduction to the concept of fermionic T-duality.

For a thorough review with many references see [23], as well as [107] for some concrete examples,

illustrating the fermionic T-duality transformation.

In summary, fermionic T-duality is a cousin of bosonic T-duality which extends the idea to

work on the entire superspace. It is a tree-level duality symmetry of string perturbation theory

and it preserves the supersymmetry of the background, with the Killing spinors belonging to

the Abelian subalgebra of the superalgebra [16]. From the supergravity perspective, fermionic

T-duality rotates Killing spinors, preserving chirality in addition to supersymmetry. The pair

ε = (ε, ε̂) generates a single supersymmetry transformation.

To apply the Buscher procedure to the fermionic generalisation, we require that our fermionic

isometries (or supersymmetries) commute [23]. The immediate consequence of this is that the

fermionic T-duality transformation does not admit Majorana (or real) Killing spinors. Therefore,

we need complex Killing spinors which result in complex solutions to supergravity.
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In the introduction we noted the differences between bosonic and fermionic T-duality transfor-

mations. Most notably, the difference in the sign appearing in front of the logarithm term in the

dilaton shift changes to ’plus’ for the fermionic case, where it was ’minus’ in the bosonic case.

This change ends up being essential for establishing the self-duality of AdS5 × S5. In fact, the

shift of the dilaton due to bosonic T-duality along the AdS5 is exactly cancelled by the dilaton

shift caused by fermionic T-duality, which results in a symmetry at the quantum level.

For completeness we give the explicit form of the Killing spinors of the T-dual theory:

ε̃αi = (C−1)ijε
α
j ,

˜̂εα̂i = (C−1)ij ε̂
α̂
j .

Finally, we note that fermionic T-duality transformations do not commute with bosonic T-

duality transformations.
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Part II

Supergravity
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Chapter 3

Fermionic T-duality of

AdSd × Sd(×Sd)×M

3.1 Introduction

In this chapter we consider the self-duality of some non-maximally supersymmetric backgrounds

as a result of performing a series of bosonic and fermionic T-dualities. We have aimed to keep

our computations as simple as possible by working directly with the fields at the level of the

supergravity. This simple approach is a great way to develop intuition regarding the mechanism

of T-duality transformations, by observing the changes in the RR fields explicitly. With the

machinery laid bare, it is easy to notice the need for bosonic T-dualities along some torus

directions, a fact which was nearly missed when working at the level of the coset1. Although we

find it most convenient to work with the IIA string theory as in [121], a bosonic T-duality will

take us back to a IIB background. Thus, our proofs are also valid in the extension to IIB. The

goal of this chapter is to provide an elementary explanation of the duality of these backgrounds,

at the expense of generality. The recipe given in section 2.3 is what we apply to every example

covered in this chapter. However, subtleties arise when considering the exceptional cases (i.e.

backgrounds possessing two spheres) and therefore additional discussion is required. At the end

of each example we present a diagram that summarizes the technical details of that section in

order to provide a ‘big picture’ view. T-duality in the general context is considered in Chapter

4 which also discusses some of the examples presented in this chapter. This chapter is based on

research covered in [36].

1The non-linear σ-models that we use in this thesis may be described by cosets G/H, where G is the isometry
group of the spacetime manifold and H is the isotropy group. See Chapter 4 for details and the Appendices for
mathematical definitions.
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3.2 Type IIA Supergravity

Since we are working with IIA supergravity it is necessary to give the basic layout of fermionic

T-duality in this formalism. Here we have two Majorana-Weyl spinors of opposite chirality. We

use a basis in which the chirality operator is given by Γ11 = σ3 ⊗ 1. Then we may write the

spinors as follows

(
εβ

0

)
and

(
0

ε̂β

)
, β = 1, ..., 16.

We may combine the Killing spinors into a single 32-dimensional E = (ε, ε̂). Greek indices

denote curved spatial directions, given by µ, ν = t, x, z, θ+, ..., ψ−, u. Latin indices represent

flat spacetime coordinates given by m,n = 0, 1, ..., 9. Spinor indices are given by α and β.

Following [121], the Killing spinors must ensure that the gravitino and dilatino variations2

vanish, which implies that

DµE = −1

8
SΓµE, TE = 0 (3.1)

where the covariant derivative is

DµE = ∂µE +
1

4
ωµnpΓ

npE

and

S ≡ /F
(2)

Γ11 + /F
(4)
, T ≡ i

16
ΓmSΓm =

3i

8
/F

(2)
Γ11 +

i

8
/F

(4)
.

The supergravity solutions that we are interested in have the fermionic fields set to zero. Vari-

ations under supersymmetry have the following form:

δ(boson) ∝ fermion, δ(fermion) ∝ boson.

Immediately it follows that the bosonic field supersymmetry variation is δ(boson) = 0. By a

supersymmetric solution, we mean that

2See appendix A for more details.
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δ(boson) = 0 = δ(fermion) .

Therefore, the only condition required to have any supersymmetry preserved is that the fermionic

field supersymmetry variation vanishes: δ(fermion) = 0. The Killing spinor equations (3.1) do

precisely this, they set these fermionic variations to zero and we are able to determine what

supersymmetries are present. The Buscher procedure for the fermionic generalisation, as derived

by Berkovits and Maldacena [22], is employed where the direction along which we dualise is

specified by a complex Killing spinor. That is, a fermionic isometry or, supersymmetry. For

example, E = E1 + iE2 is one such combination where Ei = (εi; ε̂i) are solutions of (3.1). We

are able to perform T-duality along multiple directions Ei at once, however, they must obey a

commutativity condition given by

ĒiΓµEj = 0 ∀µ, i, j, where Ē ≡ ETΓ0. (3.2)

Equation (3.2) is the statement that our isometry is Abelian3, which is required to perform

fermionic T-duality. This is because Berkovits and Maldacena followed Buscher’s procedure and

gauged an Abelian symmetry (as was done for the bosonic case). Condition (3.2) is not solved

by any real spinors, thus we use complex Killing spinors. The next step is to find a matrix C

from

∂µCij = iĒiΓµΓ11Ej , (3.3)

which gives us the change in the dilaton

∆Φ ≡ Φ′ − Φ =
1

2
log(detC), (3.4)

and the change in the RR forms

∆F ≡ eΦ′F ′αβ − eΦFαβ =
16

i
(C−1)ijε

α
i ε̂jβ. (3.5)

Note that in (3.5) the lower-case spinors are complex, i.e. Ei = (εi, ε̂i). The bispinor F encoding

the RR forms is given by

3Note that at the moment, there does not seem to be a meaningful reason for why this must be true. Perhaps
future discussions will reveal a deeper understanding. What we can say is that, if our isometries do not commute,
the situation is more complex.
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Fαβ =
1

2!
F (2)
mn(γm)αγ(γn)γβ +

1

4!
F (4)
mnpq(γ

mγnγpγq)αβ . (3.6)

The lower-case gamma matrices are related to the upper-case gamma matrices by

Γm =

[
0 (γm)αβ

(γm)αβ 0

]
.

That is, the lower-case gamma matrices are the 16 × 16 off-diagonal blocks of the larger 32-

dimensional gamma matrices. See Appendix A for our conventions.

3.3 AdS2 ×M Backgrounds

This section considers AdS2 × S2(×S2) ×M backgrounds, all of which possess 8 supersymme-

tries4. However, we neglect the superconformal Killing spinors in favour of the Poincaré Killing

spinors as in [23]. Poincaré Killing spinors depend solely on the radial direction of the AdS sub-

space. These spinors are most useful in exhibiting self-duality and tend to have a simpler explicit

form. Using Poincaré Killing spinors restricts us to considering 4 Killing spinors, which allows

for 2 complex directions, upon complexification, along which to perform fermionic T-duality.

The metric has a parameter α that has range (0, 1), such that when α → 1, the second sphere

approaches f flat spacetime. This decouples the sphere from the AdS2 × S2 subspace which re-

sults in these directions being re-compactified into a T 2, contributing to torus directions required

to make AdS2 × S2 × T 6. The general metric is given by

ds2 = ds2
AdS +

1

α
ds2
S+

+
1

1− α
ds2
S− +

∑
i

dy2
i = ηmne

m
µ e

n
νdx

µdxν . (3.7)

We adopt Poincaré coordinates for AdS2

ds2
AdS2

=
−dt2 + dz2

z2
,

with implied spin connection components ωt[01] = 1
z . For the spheres we have the nested form

ds2
S3
±

= dθ2
± + sin2 θ±dφ

2
±, (3.8)

4The notation AdS2 × S2(×S2)× T identifies two classes of solutions: the AdS2 × S2 × T 6 backgrounds and
the exceptional AdS2 × S2(×S2) × T 4 backgrounds. Therefore, the brackets indicate that the second sphere is
optional with the value of the parameter α specifying which background is being dealt with.
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with implied spin connection components ωφ+[23] = − cos θ+ and ωφ−[45] = − cos θ−. Note that

the spin connection components ωµab are independent of α although the vielbeins emµ are not.

For what follows we take Φ = 0 and use the following RR flux:

/F
(4)

= Γ01(−Γ67 + Γ89) +
√
αΓ23(Γ68 + Γ79) +

√
1− αΓ45(−Γ78 + Γ69). (3.9)

For α = 1, bosonic T-duality along the x5 direction takes us to the IIB AdS2 × S2 × T 6 case

studied in [39], with F (5) only. Following [121] we may write

/F
(4)

= −4Γ0167P1(1− P2),

where

P1 =
1

2
(1 + Γ6789), P2 =

1

2
(1 +

√
αΓ012378 +

√
1− αΓ014568),

are projection operators. The Killing spinor equation is

DµE = −1

8
/F

(4)
ΓµE,

and we can build up an explicit solution E = z−1/2RS+RS−ξ as shown in the box that follows.

Explicit Form of the Killing Spinors

Firstly we restrict to Poincaré Killing spinors, i.e. those independent of the boundary coordinates

of AdS. For AdS2 this means that ∂tE = 0. Thus the µ = t equation becomes

1

2z
Γ01E =

1

2
Γ0167P1(1− P2)ΓtE,

which simplifies to the constraint

E = −Γ067P1P2E.

The µ = z equation then reads ∂zE = − 1
2zE which has the solution E ∝ z−1/2.
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We then take a look at the first sphere. For µ ∈ S+ we get

DµE =

√
α

2
ΓµΓ2368E, (3.10)

where we have used the fact that P1E = P2E = E. The Killing spinors for S2 are given in [?].

The equation

Dµε = ± i
2
eaµΓaε,

is solved by

ε = exp

(
±iθ

2
Γ2

)
exp

(
φ

2
Γ23

)
.

The θ equation is easy to solve, but the φ equation requires more work. One needs to Taylor

expand the exponentials and use the fact that (iΓ2)2 = −1 and {iΓ2,Γ23} = 0. In our case, we

replace iΓ2 → Γ368 which still satisfies these conditions. Thus

RS+ = exp

(
θ+

2
Γ368

)
exp

(
φ+

2
Γ23

)
.

Then we take a look at the second sphere. For µ ∈ S− we get

DµE =

√
1− α
2

ΓµΓ4578E,

where [ΓµΓ4578, RS+ ] = [Dµ, RS+ ] = 0, meaning that this is the equation which must be solved

by RS− alone.

Finally, we arrive at the complete solution

E(ξ) =
1√
z

exp

(
θ+

2
Γ368

)
exp

(
φ+

2
Γ23

)
exp

(
θ−
2

Γ578

)
exp

(
φ−
2

Γ45

)
ξ, (3.11)

with constant ξ obeying

− Γ067ξ = P1ξ = P2ξ = ξ. (3.12)
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There are exactly 4 Killing spinors ξa, and we may take them to be orthonormal and normalised:

ξa · ξb = δab.

We need complex combinations Ei of the Killing spinors Ei above in order to perform fermionic

T-duality. In general we may write these as

Ei = biaE(ξa), a = 1, ...4.

Then the commutativity condition (3.2) becomes

biaV
µ
abbjb = 0, V µ

ab ≡ ĒaΓ
µEb. (3.13)

For the AdS2 case we can show that V µ = 0, using Γ067E = −E, except for µ = t, where

V t
ab = ETa Γ0

zΓ
0Eb = −ξTa ξb = δab.

So that the commutativity condition on the coefficients bia is simply biabja = 0.

3.3.1 The case α = 1: AdS2 × S2 × T 6

This is the simplest AdS2 case. Here we can proceed in a similar fashion to [23]’s treatment of

type IIB AdS3 × S3 × T 4. However, this case is even simpler as we only have two complexified

Killing spinors.

With P2E = E, the µ ∈ S+ equation (3.10) simplifies to

DµE =
1

2
ΓµΓ1E,

and thus the resulting solution is given by

E(ξ) =
1√
z

exp

(
θ

2
Γ21

)
exp

(
φ

2
Γ23

)
ξ (3.14)

with ξa, a = 1, ..., 4 still solving (3.12). We may write these as
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(ξa)
β =

1

2
δ2a−β−1 +

1

2
δ2a−β+8 +

1

2
δ2a−β+16 −

1

2
δ2a−β+23.

Where we note that each ξ has 4 non-zero entries at the positions given by the Kronecker-

delta’s, with β = 1, ..., 32 temporarily. Our complex combinations Ei = biaE(ξa) are specified

by choosing5

b1 = (1, 0, i, 0), b2 = (0, 1, 0, i),

which corresponds to

E1 = E1 + iE3, E2 = E2 + iE4.

Then, after integrating (3.3), we arrive at

C =
1

z

[
i cos θ+ − sin θ+ sinφ+ − cosφ+ sin θ+

− cosφ+ sin θ+ i cos θ+ + sin θ+ sinφ+

]
.

To find the shift in the dilaton due to fermionic T-duality, we take the determinant of C, then

(3.4) gives

∆Φ = Φ′ − Φ = − log(z). (3.15)

Note that the background we arrive at after doing a fermionic T-duality is complex. It also

shifts the dilaton. To get back to the original background, which has Φ = 0, we need to cancel

this shift and somehow obtain a real background. Bosonic T-duality along the time direction

(which is also the only boundary direction of AdS2) does precisely this. It undoes the shift by

giving us Φ′′ − Φ′ = log(z) and makes our background real. It also changes the metric in the

following way:

ds2
AdS =

−dt2 + dz2

z2
→ −z2dt2 +

dz2

z2
=
−dt2 + dz′2

z′2
, (3.16)

where we have defined z′ = 1/z in the last step in order to bring the metric back to its original

form.

5Note that choosing these complex combinations is not a well defined process and usually involves some trial
and error.
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Finally we consider the RR forms. The change in the bispinor F (3.5) has some real terms

(which cancel the original flux (3.9)) and imaginary terms giving rise to a 2-form and a 4-form

flux.

eΦ′ /F
(2)′

= iΓ14,

eΦ′ /F
(4)′

=− iΓ0235 − iΓ1569 + iΓ1578.
(3.17)

Then bosonic T-duality along the x0, x4, x6 and x7 directions recovers the original RR flux. The

total number of bosonic T-dualities is four, half of which must be along torus directions. This

was also the case for AdS5 × S5 in [22] and for AdS3 × S3 × T 4 in [23].

In earlier treatments of AdS2×S2 found in [124,125], only the coset σ-model PSU(1, 1|2)/U(1)2

is studied, rather than the critical string theory. Here the need for bosonic T-duality along torus

directions was not noticed. However, this approach was extended to include non-coset fermions

in [36], which forced the inclusion of T-duality along torus directions.

3.3.2 AdS2 × S2 × T 6 with other RR fluxes

Earlier we studied the case α = 1 with only a F (4) turned on. There exist other combinations

of fluxes with the same underlying geometry. One such case, considered in [36,39,126], has flux

given by

/F
(2)

= −Γ01, /F
(4)

= Γ23(Γ45 + Γ67 + Γ89). (3.18)

Showing self-duality for this background is no more difficult than the F (4) only case. We may

write

S = −4Γ01Γ11(1− P ),

in terms of the projection operator

P =
1

4
(1− Γ6789 − Γ4589 − Γ4567).

Here, the Killing spinors are still given by (3.14), however, the constraint on ξ is now given by
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Γ0Γ11Pξ = ξ.

We choose solutions so that

(ξa)
β = 0 for β < a, (ξa)

β > 0 for β = a,

and then make the following complex combinations:

E1 = iE1 + E4, E2 = iE2 − E3.

This gives

C =
1

z

[
ieiφ+ sin θ+ −i cos θ+

− cos θ+ −ie−iφ+ sin θ+

]
,

which yields a shift in the dilaton of ∆Φ = − log(z). This is identical to (3.15), and is similarly

cancelled by a bosonic T-duality along the time direction. The change in RR forms is

∆F (2) =γ01,

∆F (4) =− γ23(γ45 + γ67 + γ89)− iγ1468 + iγ1479 + iγ1569 + iγ1578.

We can clearly see that the real terms cancel the original flux, as expected. Finally, acting with

bosonic T-duality along the directions t = x0, x4, x6 and x8 returns us to (3.18).

3.3.3 The case α < 1: AdS2 × S2 × S2 × T 4

Our generic complex combinations are given by Ei = biaEa. One can show that there does not

exist a choice of bia which leads to a shift in the dilaton of the form ∆Φ = log(z)+const. Hence,

in this case, fermionic T-duality produces a shift in the dilaton which necessarily depends on the

sphere coordinates θ±, φ±. Then bosonic T-duality along time (and some flat torus directions)

cannot undo this shift.

To circumvent this problem, we allow bosonic T-duality to act along a complex Killing vector. To

this end we introduce some new coordinates for one of the spheres. These coordinates arise from



CHAPTER 3. FERMIONIC T-DUALITY OF ADSD × SD(×SD)×M 44

Figure 3.1: A summary of the T-dualisation process for AdS2 × S2 × T 6.

the form of the coset element used in [36]6. Since S2 is a symmetric space it may be described

by a coset space G/H where the Lie algebra g of G admits a Z2-grading (or automorphism).

Then, as a vector space, g can be decomposed into a direct sum of graded subspaces7

g = g(0) ⊕ g(2).

In particular we have S2 = SU(2)/U(1) and

su(2) = g(0) ⊕ g(2),

where

g(0) = 〈L+ + L−〉 = 〈L1〉, g(2) = 〈L+ − L−, L3〉 = 〈L2, L3〉.

This coset space is parametrized by the coset element

g = eλ+L+e−λ3L3 ∈ su(2),

6The algebra has been rescaled to avoid factors of c =
√
α. Further discussion of related parametrisations

occur in [125].
7This will be discussed in more detail in the next chapter.
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where L± = iL1 ± L2, Ln = 1
2iσn and the σn are the Pauli matrices. Now we introduce the

Maurer-Cartan 1-form which takes values in the Lie algebra g:

J = g−1dg ∈ su(2),

with d denoting the exterior derivative. Using the Z2-automorphism we are able to decompose

J , as a vector space, into J = J(0) + J(2). Then J(2) is the projection of the Maurer-Cartan

current onto g(2):

J(2) = [g−1dg](2) = eiλ3dλ+L2 + dλ3L3.

From this the metric is constructed as follows

ds2
S+ = −2Tr(J(2)J(2)) = dλ2

3 + e2iλ3dλ2
+.

The reason for constructing the metric using the trace of the Maurer-Cartan form is because

it is the only 1-form that, by construction, satisfies the Maurer-Cartan equation. This ensures

that our metric possesses and preserves the symmetries associated with the chosen Lie group G.

Comparing this metric to the metric in (3.8) allows us to show that the new coordinates x2 = λ3,

x3 = λ+ are related to θ+, φ+ as follows

eiλ3 ≡ cos θ+ + i sin θ+ cosφ+,

λ+ ≡ e−iλ3 sin θ+ sinφ+ =
sinφ+

cot θ+ + i cosφ+
.

(3.19)

In what follows we write e3 = e3
µdx

µ = sin θ+dφ+ and so on for the original coordinates.

Then, underlined at indices will represent new coordinates: x2 = λ3, x3 = λ+. This change of

coordinates preserves the volume form e2∧e3 = e2∧e3 . By changing coordinates we change the

original real S2 (with θ+, φ+) into a complex S2. When T-duality is applied to this exceptional

case we need to choose one of the new complex directions, together with the time-like direction

and two torus directions, in order to illustrate self-duality. Therefore, we choose to T-dualise

along λ+ as our new complex direction.

The dual metric is given by

ds′2AdS2
= −z2dt2 +

dz2

z2
, ds′2S+

= dλ2
3 + e−2iλ3dλ2

+, (3.20)
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and a shift in the dilaton

∆Φ = Φ′′ − Φ′ = log
(
ze−iλ3

)
= log

(
z

cos θ+ + i sin θ+ sinφ+

)
.

Notice that the dual metric in terms of θ+, φ+ is no longer real. To recover a sphere we need to

choose a new pair of real coordinates. Define θ′, φ′ by (3.19) with λ3 replaced by −λ3, i.e.

eiλ3 = cos θ′ + i sin θ′ cosφ′,

λ+ =
sinφ′

cot θ′ + i cosφ′
.

This returns ds′2S+
= dθ′2 + sin2 θ′dφ′. As before, in order to recover AdS2 we need to invert the

radial coordinate by defining z′ = 1/z which gives ds′2AdS2
= (−dt2 + dz′2)/z′2.

For the fermionic T-duality we choose the following complex combinations

E1 = E1 + iE4, E2 = −E2 + iE3.

The constant Killing spinors ξa which we input to get the Ea’s are easy to find (using Mathe-

matica for example), but are rather messy to display here. These constant spinors are ordered

by the position of the first non-zero component where we have chosen the sign such that the

first term is positive:

(ξa)
β = 0 for β < a. (ξa)

β > 0 for β = a.

Then we use E1, E2 to calculate the matrix C

C = −2i
cos θ+ + i sin θ+ cosφ+

z

[
−e−iφ− sin θ− cos θ−

cosθ− eiφ−sinθ−

]

and find the change in the dilaton

∆Φ = Φ′ − Φ = log

(
cos θ+ + i sin θ+ cosφ+

z

)
+ log (−2i). (3.21)

which cancels the bosonic shift found earlier perfectly (apart from the constant which may be

absorbed).
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Considering the change in the RR forms, we notice that a 2-form has appeared

eiΦ
′
F ′(2) =

√
1− α(sin θ+ − i cos θ+ cosφ+)e1 ∧ e2 + i sinφ+e

1 ∧ e3

cos θ+ + i sin θ+ cosφ+
= −i

√
1− αe1 ∧ e2.

Rewriting the 2-form in the new underlined at coordinates simplifies the expression greatly. The

change in the 4-form ∆F (4) has real terms which precisely cancel the original F (4), as required.

It also has imaginary terms, greatly simplified by the new coordinates, and given by

eiΦ
′
F ′(4) = −i(e1e3e6e8 + e1e3e7e9) + i

√
α(−e0e2e6e7 + e0e2e8e9) + i

√
1− α(e0e3e4e5).

Acting with bosonic T-duality on F ′(2) and F ′(4) in the usual way and along the directions

(t = x0; λ = x3, x7, x8) gives

F ′′(2) = 0,

F ′′(4) = (e0e1e6e7 + e0e1e8e9) +
√
α(e′2e′3e6e8 + e′2e′3e7e9) +

√
1− α(−e4e5e7e8 + e4e5e6e9).

The new at coordinates e′2, etc. are interpreted as being related to the new metric ds′2 (3.20)

created by the bosonic T-duality. Thus e′3 = e′−iλ3dλ+ 6= e3. Notice that e′2 = −dλ+ = −e2

so that we preserve the volume form with this second coordinate change to the new coordinates

θ′ = x2′ , φ′ = x3′ we write this as e′2 ∧ e′3 = e2′ ∧ e3′ Thereby recovering the original flux F (4)

in (3.9).

3.4 AdS3 ×M Backgrounds

Here we will start with the AdS3 × S3 × S3 × S1 background immediately. The simpler cases

follow in much the same way as the simple cases for AdS2, and there is nothing new to learn

from them as a result. Also, the case AdS3 × S3 × T 4 was studied in [23] in the context of IIB

string theory. Hence the focus on the 0 < α < 1 case here.

The metric is given by

ds2
AdS3

=
−dt2 + dx2 + dz2

z2
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Figure 3.2: A summary of the T-dualisation process for AdS2 × S2 × S2 × T 4.

which has accompanying spin connection components ωt[02] = ωx[21] = 1/z. Following [?], we

use nested coordinates for the S3

ds2
S3
±

= dθ2
± + sin2 θ±(dφ2

± + sin2 φ±dψ
2
±)

with spin connection components ωφ+[34] = − cos θ+, ωψ+[35] = − cos θ+ sinφ+ and ωψ+[45] =

− cosφ+. The flux is given by

/F
(4)

=2(−Γ0129 +
√
αΓ3459 +

√
1− αΓ6789) (3.22)

=− 4Γ0129(1− P )

as in [121], where the projection operator is

P =
1

2
(1 +

√
αΓ012345 +

√
1− αΓ012678).

Notice that for a bosonic T-duality along the x9 direction, we return to fluxes considered in [127].

Furthermore, taking the limit α → 1 reduces this to the IIB AdS3 × S3 × T 4 case studied by

O’Colgain [23].
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This background has 16 supersymmetries, giving us 8 Poincaré Killing spinors and therefore 4

complex directions along which we may perform fermionic T-duality. We arrive at a solution

E = z−1/2RS+RS−ξ in much the same way as we did for the AdS2 case. For AdS3 there is of

course an extra boundary direction x, thus we have ∂tE = 0 and ∂xE = 0. The µ = t equation

then gives us the constraint E = Γ019PE, and the µ = x equation is identical. As before, the

µ = z equation is solved by E ∝ z−1/2. Using PE = E, for µ ∈ S+ we have

DµE =

√
α

2
ΓµΓ01345E

which is solved by a factor RS+ = e
θ+
2

Γ0145
e
φ+
2

Γ34
e
ψ+
2

Γ45
. Similarly, for µ ∈ S− we get

DµE =

√
1− α
2

ΓµΓ01678E

which is solved by RS− = e
θ−
2

Γ0178
e
φ−
2

Γ67
e
ψ−
2

Γ78
alone, since [ΓµΓ01678, RS+ ] = [Dµ, RS+ ] = 0.

The complete solution is

E(ξ) =
1√
z

exp

(
θ+

2
Γ0145

)
exp

(
φ+

2
Γ34

)
exp

(
ψ+

2
Γ45

)
exp

(
θ−
2

Γ0178

)
exp

(
φ−
2

Γ67

)
exp

(
ψ−
2

Γ78

)
ξ

with constant ξ obeying

Γ019ξ = Pξ = ξ.

As mentioned earlier there are 8 of these spinors. We shall organise the orthogonal ξa so that

(ξa)β = 0 for β < a, (ξa)β =
1

2
for β = a.

The commutativity relation (3.13) is only non-zero for µ = t, x:

V t = −1, V x = −
√
ασ2 ⊗ σ2 ⊗ 12×2 −

√
1− α12×2 ⊗ σ1 ⊗ 12×2.

After some trial and error, we arrive at the following complex combinations

E1 = E1 − iE8, E2 = E2 + iE7, E3 = E3 − iE6, E4 = E4 + iE5.
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This choice leads to

C = C+(z, θ+, φ+, ψ+)C−(θ−, φ−, ψ−)

where

C+(z, θ+, φ+, ψ+) =
2i

z
sin θ+(cosφ+ + i sinφ+ cosψ+)

is a number, and

C− =


−cθ − isθsφ(α̂cψ +

√
αsψ) −iα̂cφsθ −

√
αcφsθ sθsφ(

√
αcψ − α̂sψ)

−iα̂cφsθ isθsφ(α̂cψ −
√
αsψ)− cθ sθsφ(

√
αcψ + α̂sψ)

√
αcφsθ

−
√
αcφsθ sθsφ(

√
αcψ + α̂sψ) cθ + isθsφ(α̂cψ −

√
αsψ) iα̂cφsθ

sθsφ(
√
αcψ − α̂sψ)

√
αcφsθ iα̂cφsθ cθ − isθsφ(α̂cψ +

√
αsψ)



is a matrix with unit determinant. Here sθ = sin θ−, cθ = cos θ−, etc. Also, α̂ =
√

1− α. The change in

the dilaton is then

∆Φ = Φ′ − Φ = 2 log
2 sin θ+(cosφ+ + i sinφ+ cosψ+)

z
. (3.23)

As for the AdS2 case with two spheres, we need to perform bosonic T-duality along some complex Killing

vectors in order to undo the shift in the dilaton. From the parametrisation of the coset element in [36]

we arrive at the metric

ds2
S3

+
= dλ2

3 + e2iλ3dλ2
+ − e2iλ3dλ2

−.

Notice that this is the generalisation of (3.20). Next, dualise along λ+, λ− and two AdS3 directions t

and x. Doing so gives us a shift in the dilaton of

∆Φ = Φ′′ − Φ′ = 2 log(ze−iλ3)

from which we read off

eiλ3 = sin θ+(cosφ+ + i sinφ+ cosψ+). (3.24)

This duality changes the the metric ds2
S3

+
to ds′2

S3
+

= dλ2
3 + e−2iλ3dλ2

+ − e2iλ3dλ2
−. The dual metric is no

longer real when expressed in the old coordinates θ+, etc. So, just as before, in order to recover a sphere
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we must choose a different real slice given by θ′, φ′ and ψ′ which are defined by (3.24) with λ3 replaced

by −λ3. That is, e−iλ3 = sin θ′(cosφ′ + i sinφ′ cosψ′).

Finally, we consider the changes made to the RR fields. The fermionic T-duality produces a 2-form

flux which, as for the AdS2 case, simplifies when written in the new complex coordinates. Again, using

underlined flat indices for the new coordinates, we write e3 = dλ3. Then

∆F (2) =2
√

1− α
[
cot θ+e

2e3 +
i(cosφ+ cosψ+ + i sinφ+)e2e4 − i sinψ+e

2e5

sin θ+(cosφ+ + i sinφ+ cosψ+)

]
=2i
√

1− αe2e3. (3.25)

For the 4-form flux

∆F (4) =− 2
√
αe0e1e9

[
cot θ+e

3 +
i(cosφ+ cosψ+ + i sinφ+)e4 − i sinψ+e

5

sin θ+(cosφ+ + i sinφ+ cosψ+)

]
+ 2
√
αe3e4e5e9 + 2

√
1− αe6e7e8e9 − 2e0e1e2e9

+ 2e2e9

[
cot θ+e

4e5 +
−i(cosφ+ cosψ+ + i sinφ+)e3e5 − i sinψ+e

3e4

sin θ+(cosφ+ + i sinφ+ cosψ+)

]
.

Notice that the terms on the second line exactly cancel the original F (4). The first line contains e3,

given by the square bracket, as in (3.25). The square bracket on the third line is just ie4e5, this is seen

by noting that the volume form for the underlined coordinates should be the same as for the original

coordinates, i.e.

[ie3] ∧ [ie4 ∧ e5] = (cot2 θ+ + ...)e3 ∧ e4 ∧ e5 = −e3 ∧ e4 ∧ e5.

Then, after the fermionic T-duality, the RR fluxes are

eΦ′F (2)′ =2i
√

1− αe2e3 (3.26)

eΦ′F (4)′ =2i
√
αe0e1e3e9 + 2

√
1− αe6e7e8e9. (3.27)

To get back to the original flux we bosonic T-dualise along t, x and λ± (i.e. directions 0, 1, 4, 5) which

leads to

eΦ′′F (4)′′ = −2e0e1e2e9 + 2
√
αe
′3e
′4e
′5e9 + 2

√
1− αe6e7e8e9.

Finally, we use that e
′3e
′4e
′5 = e3′e4′e5′ to write F (4)′′ in terms of the final set of real coordinates θ′, φ′

and ψ′. Thus, recovering the original RR flux, (3.22).
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Figure 3.3: A summary of the T-dualisation process for AdS3 × S3 × S3 × T 1.

3.5 Combined Bosonic and Fermionic T-duality: In General

This section deals with proving the invariance of AdSn×Sn×M10−2n backgrounds (and their exceptional

extensions) under combined bosonic and fermionic T-duality without using the σ-model approach. In

other words, this section generalises the treatment of these backgrounds, dealt with earlier on in this

chapter, by applying T-duality transformations directly to the supergravity fields. We consider these

geometries whilst being supported by various RR fluxes. This discussion extends the earlier results

in [16, 22, 23, 101, 107] to the whole class of AdSn × Sn ×M10−2n super-backgrounds supported by RR

fluxes.

3.5.1 Rules for Fermionic T-duality

Killing Spinors

The component supergravity fields along the bosonic directions are T-dualised using the original Buscher

rules [12,13,129]. Generalising these rules to fermionic directions was given in [22]. Fermionic T-duality

acts on the dilaton Φ(X) and the RR fields (which are p-forms) whilst leaving the metric and NSNS

2-form B flux invariant (see Chapter 2 for more details). In the fermionic case we dualise along directions

specified by Grassmann-even8 Killing spinors, Ξµ(X) (where µ labels their number), that generate Abelian

superisometries. This means that the Killing spinors need to satisfy an additional condition called the

commutativity condition

8Grassmann algebras are examples of supercommutative algebras. These algebras may be decomposed into
even and odd variables which satisfy a graded version of commutativity. In particular, even elements commute
whilst odd elements anticommute.
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ΞµΓAΞν = 0 for all A,µ, ν with A = 0, 1, ..., 9. (3.28)

This condition has important consequences for complex Killing spinors; the only type of spinor for which

non-trivial solutions may be obtained. As a result, they are associated with complex Grassmann-odd

directions in superspace. The Killing spinor equations have the following form

(
∂M −

1

4
ΩABM (X)ΓAB +

1

8
/FEAM (X)ΓA

)
Ξ = 0,

1

16
ΓA /FΓAΞ = 0, (3.29)

where ΩABM (X) and EAM (X) are the spin connection and the bosonic vielbeins of the 10-dimensional

background. Thus, the covariant derivative is given by ∇M := ∂M − 1
4ΩABM ΓAB . The contribution to the

RR fluxes is given by /F :

/F =

e
Φ
(

1
2F

(2)
ABΓABΓ11 + 1

4!F
(4)
ABCDΓABCD

)
type IIA

− e
Φ

2 (1 + Γ11)
(
iF

(1)
A ΓAσ2 + 1

3!F
(3)
ABCΓABCσ1 + i

2·5!F
(5)
ABCDEΓABCDEσ2

)
type IIB

The Killing spinor equations in (3.29) are obtained by requiring that the supersymmetry variations of

the gravitino and dilatino vanish. They are also determined by the geometry of the background and the

chosen RR fluxes (see Chapter 2 for a detailed discussion). The second equation in (3.29) is used together

with the integrability requirement for the first equation in (3.29) to obtain a projector P8(n−1), singling

out the 8(n− 1) fermionic isometries of the backgrounds of interest. Once this projector has been found,

the second equation in (3.29) is identically satisfied.

Fermionic T-duality Rules

As noted in Chapter 2, the main object of interest when performing a fermionic T-duality is the scalar

field C which is used to calculate the changes in the fields. We arrive at this matrix C once we have

solved the Killing spinor equations which yield symmetry preserving Killing spinors. Then, after making

complex combinations of these spinors such that they satisfy (3.28), we are able to construct C from

∂MCµν =

EAM Ξ̄µΓAΓ11Ξν type IIA

EAM Ξ̄µΓAσ
3Ξν type IIB

The matrix C = Cµν(X) is formed by the components of the NSNS 2-form B field along the Abelian

fermionic isometries (i.e. Θ = 0) [22]

dθµ ∧ dθνBµν(X,Θ)|Θ=0 := dθµ ∧ dθνCµν(X), (3.30)
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where C depends on the bosonic directions X only. Once we have obtained C then we can find the dilaton

as follows

∆Φ = Φ′ − Φ =
1

2
log (detC), (3.31)

and the change in the RR fluxes

∆F = /F
′ − /F = 8Ξµµ(C−1)µνΞµνΓ, (3.32)

where Γ is a certain product of Γ-matrices which we use to split the fermionic E(1,2) currents into four

pieces. This corresponds to splitting the superalgebra generator Q into Q, Q̂, S and Ŝ respectively.

Background RR Flux Γ

AdS5 × S5 F5 flux 1
AdS3 × S3 × T 4 F3 flux −Γ23

AdS3 × S3 × S3 × S1 F3 flux −Γ23

AdS3 × S3 × S3 × S1 F4 flux Γ239

AdS2 × S2 × T 6 F3 flux −Γ23

AdS2 × S2 × T 6 F2 & F4 fluxes Γ11Γ123

AdS2 × S2 × T 6 F4 flux Γ1

AdS2 × S2 × S2 × T 4 F4 flux Γ239

Table 3.2: Table displaying the Γ corresponding to each background and their various fluxes.

Explicit Form of the Killing Spinors

Berkovits and Maldacena describe a direct way to find the explicit form of the Killing spinors associated

with the anti-commuting fermionic isometries along which we dualise the supergravity fields [22]. This

method suggests extracting the form of the Killing spinors directly from the corresponding components of

the fermionic currents JQ associated with the generators Q of the superisometry algebra. By definition,

the Killing spinors must satisfy the commutativity condition (3.28) and the Killing spinor equations

(3.29). Concretely, the Killing spinors are given by the components of the matrix Jβα(|y|, yâ, λ3) in

JQα |Θ=0 = dθµJαµ (|y|, y, λ3) = dθµe−BQµe
B |Qα,θ̂=ξ̂=0 = dθµΞαµ , (3.33)

where

eB := eθ̂
αQ̂α+ξ̂αŜα |y|De−λ3L3e−ρ

β
αR

α
β . (3.34)

Note that Θ = 0 implies that we consider components proportional to the generators of our isometries.

The commutativity condition is obtained by differentiating (3.33) (using the exterior derivative) to get
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0 = dΞµ + [e−BdeB ,Ξµµ]|Θ=0,

e−BdeB |Θ=0 = Ωâb̂(y/|y|)Râb̂ + JD(|y|)D + JL3
(λ3)L3.

Note that the index µ labels a given Killing spinor. From the structure of eB (3.34) and the commutation

relations

[D,Q] =
1

2
Q,

[Râ, Q] = −s
2

2
QΓâΓ4P,

[L3, Q] =
i

2
Q,

we have the following explicit form of the Killing spinors in question9

Ξαµ = Jαµ (|y|, y, λ3) = |y|− 1
2 e

i
2 cλ3Oαµ(yâ/|y|), (3.35)

where Oαµ(yâ/|y|) := (esPΓâΓ4y
â/(2|y|))αµ is a Spin (n+ 1) matrix associated with the coset sn u SO(n+

1)/SO(n) and P := P+P8(n−1) is the projection matrix that singles out the 2(n − 1) anti-commuting

isometries Q = QP for each case of AdSn×Sn×M10−2n. The projector P± is given by P± := 1
2 (1±iΓ0123).

By definition,

OTΓ4O = Γ4P. (3.36)

The structure of the scalar field Cµν can be read off from (3.30) to give

Bµν |Θ=0 = iJγµΓ4
γδJ

δ
ν (|y|, y, λ3) = Cµν .

The explicit form of the matrix C can be found using (3.35) and (3.36). Then,

9The coset representative for AdS2 × S2 × T 6 is obtained from the representative for AdS2 × S2 × S2 × T 4 by
taking the limit c → 0. To do this, rescale the coordinates λ → cλ, λ3 → cλ3, and ραβ → sραβ finally taking the
limit c→ 0. Performing this limit makes the metric of the second sphere become flat. This decouples the sphere
from the AdS2 × S2 subspace. As a result, it re-compactifies into a T 2 which then forms the required T 6 for the
AdS2 × S2 × T 6 background.
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Cµν = iJγµΓ4
γδJ

δ
ν ,

= i
(
|y|− 1

2 e
i
2 cλ3Oγµ

)
Γ4
γδ

(
|y|− 1

2 e
i
2 cλ3Oδν

)
,

= i|y|−1eicλ3(OΓ4O)µν ,

= i|y|−1eicλ3(Γ4P)µν , (3.37)

and the inverse is given by

(C−1)µν = −i|y|−1eicλ3(PΓ4)µν . (3.38)

From (3.37), the dilaton shift is

∆Φ =
1

2
log (detC) = −(n− 1) log |y|+ i(n− 1)cλ3. (3.39)

Notice that this dilaton shift has the exact form of all the cases studied so far. The change in the RR

fields is found using (3.38)

∆F = 8Jµ(C−1)µνJν = −8iPΓ4Γ = −(1 + iΓ0123)/F , (3.40)

in terms of Γ. Thus, (3.40) is the change in RR fields after a fermionic T-duality transformation for any

of the cases dealt with thus far.

Explicit Form of the RR Fluxes

Here we consider the change in the RR fluxes (3.40) supporting the exceptional backgrounds, AdSn ×
Sn × Sn ×M10−3n. For n = 3, we have AdS3 × S3 × S3 × S1 and we may consider the type IIB theory

supported by an F3 flux10

F3 =
1

3
(εcbae

a ∧ eb ∧ ec +
RAdS
R+

εĉb̂âe
â ∧ eb̂ ∧ eĉ +

RAdS
R−

εc′b′a′e
a′ ∧ eb

′
∧ ec

′
),

In this case Γ = −Γ23 as in the non-exceptional (α = 0) case. This supergravity background arises due

to the intersection of D1-branes and D5-branes [130]. The solution preserves 16 supersymmetries. If

instead we chose to dualise along the φ9-direction (or the S1-coordinate), then we would arrive at a type

IIA background supported by an F4 flux [121]

10The radii for each subspace have the following values: RAdS = 1, R+ = 1/
√
α, and R− = 1/

√
1− α.
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F4 = dφ9 ∧ 1

3
(εcbae

a ∧ eb ∧ ec +
RAdS
R+

εĉb̂âe
â ∧ eb̂ ∧ eĉ +

RAdS
R−

εc′b′a′e
a′ ∧ eb

′
∧ ec

′
),

where Γ = Γ239, and we use the projector P16. This supergravity background arises due to the dimensional

reduction of the eleven-dimensional AdS3 × S3 × S3 × T 2 solution and it represents the near-horizon

geometry of two M5-branes and an M2-brane which intersect over a line [131].

For n = 2, the exceptional case has the same F4 flux as the α = 0 case. Here, we have a rank-8 projector

which may be decomposed into a product of two rank-16 projectors as in [121], i.e. P8 = P1P2. This

solution is obtained by dimensional reduction of the eleven-dimensional AdS2×S2×S2×T 5 solution and

it represents the near-horizon geometry for the intersection of two M2-branes and four M5-branes [132].

Re-numbering the F4 flux components in accordance with [121] such that 0, ..., 3 represents the directions

along which we dualise (with 2, 3, 8 and 9 the T 4 directions). Parametrize one of the spheres by x7 = λ3

and x1 = λ+ and the second sphere by x5 and x6, then we can write

/F 4 = 4P1P2Γ0492,

with

P1 =
1

2
(1 + Γ9238), P2 =

1

2
(1 +

√
αΓ047123

√
1− αΓ045698),

where Γ = Γ239. In all the cases considered here, the shifts (3.39) and (3.40) are undone, precisely, by

the corresponding bosonic T-duality.

3.5.2 Compensating Bosonic T-duality

In Chapter 1, we discussed how the complete Buscher rules for the bosonic case form part of a larger

O(D,D) symmetry group. It is this group that forms the basis for generalized geometry [133]. In the

cases that we have considered, the antisymmetric NSNS B field vanishes and the metric is diagonal, this

greatly simplifies the rules. Let I be the set of directions along which we dualise, the new metric has the

following components

G′tt =
1

Gtt
, t ∈ I,

and remains unchanged in all other directions. The dilaton shift is given by the determinant of this block

of the matrix

∆Φ = −1

2
log (detGMN ) = −1

2

∑
t∈I

logGtt.
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Finally, we can write down the change in the RR fields as

/F
′′

=

(∏
t∈I

ctΓ
t

)
/F
′
,

where t refers to at directions here, /F
′

is the result of the fermionic T-duality, and

ct :=

−i t = 0

1 t 6= 0.

Note that for a non-trivial dilaton extra factors need to be included, this was dealt with by Fukuma et

al. [81]. Time-like T-duality results in imaginary forms [83], however, the overall sign appearing after

performing combined T-duality is not physical. It only depends on the order in which we apply our

dualities.

Concerning the backgrounds under consideration, the bosonic T-dualisation was performed along the

directions labelled by t = {0, ..., 3}. The T-dualised RR fields are then

/F
′′

= −iΓ0123 /F
′
.

On substituting this back into /F
′

= /F + ∆F with the shift ∆F coming from the fermionic T-duality, we

find that the combined bosonic-fermionic T-duality leaves the RR fields intact, i.e. /F
′′

= /F
′
. Thus these

backgrounds are T-self-dual.

3.6 Summary

This chapter considered type II supergravity backgrounds AdS2×S2×T 6 and AdSd×Sd+×Sd−×T 10−3d for

d = 2, 3, including a general treatment of all the less supersymmetric backgrounds simultaneously. These

backgrounds are interesting because they are not maximally supersymmetric, unlike AdS5×S5, which has

been widely studied. Furthermore, their self-duality has not been thoroughly studied in the supergravity

context. These backgrounds have, however, been studied (in various ways) using coset σ-models. We

have shown that these non-maximally supersymmetric backgrounds are self-dual under a series of bosonic

and fermionic T-dualities. It is important to stress that it is not possible to avoid performing bosonic

T-duality along some of the torus directions, and for the exceptional cases (i.e. S+ × S−) we have to

bosonic T-dualise along some complex Killing vectors along one of the spheres. Furthermore, these self-

dual backgrounds are integrable. This is a useful fact as it provides evidence favouring the proposed link

between integrability and self-duality.
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Part III

Green-Schwarz σ-model
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Introduction to Part III

Part III contains the body of original research focusing on the σ-model perspective. The goal is to investi-

gate whether backgrounds possessing less than maximal supersymmetry are self-dual under a sequence of

bosonic and fermionic T-dualities. Two ideas are present in the part. In particular, we consider the AdS

backgrounds of the form AdSd×Sd×T 10−2d , (d = 2, 3) and AdSd×Sd×Sd×T 10−3d , (d = 2, 3). Then

we prove that AdS5×S5 is self-dual without fixing κ-symmetry gauge. To understand where κ-symmetry

plays a role, it is helpful to recall the bosonic string worldsheet. There, we quantize the fields Xµ using

oscillators that satisfy the following commutation relations11

[aµk , a
†ν
p ] = δkpη

µν .

Notice that the zero modes (i.e. µ = ν = 0) are negative norm states. These states are undesirable and

can be removed through use of the gauge symmetry. Conformal symmetry is part of the gauge symmetry

which we use to remove negative norm states. Moving onto the superstring, we find that negative norm

fermionic states arise as well. To remove these negative norm states we need a larger gauge symmetry

(as there are more degrees of freedom). This gauge symmetry is called κ-symmetry and it removes

half of the fermionic degrees of freedom12. This new symmetry plays an important role, as we will see,

when studying the self-duality of backgrounds that may be written as a graded coset structure (i.e. the

supersymmetric cousin of a bosonic symmetric space [36]). The study of AdS5×S5 was greatly facilitated

by the observation that the Green-Schwarz action for this background could be written as a Z4-graded

coset13 [126,138]

PSU(2, 2|4)

SO(1, 4)× SO(5)
.

The motivation for studying string theory directly, using worldsheet methods, arose shortly after the

AdS/CFT correspondence between type IIB string theory on AdS5 × S5 and N = 4, D = 4 super

Yang-Mills theory [6, 139–142] was described. This provided an opportunity to prove that AdS5 × S5

was an exact string solution, to write down the corresponding 2-dimensional conformal field theory and

11Here we assume a mostly plus metric.
12The existence of κ-symmetry first appeared in superparticle actions in [134–137]. Kappa-symmetry is a gauge

symmetry, larger than the conformal group, which is used to remove negative norm bosonic states. Then, κ-
symmetry removes negative norm fermionic states. However, the term κ-symmetry was not used in the original
references, being introduced later by Townsend [108].

13The special projective unitary group PSU(N) is the isometry group of a complex projective space, just as
the projective orthogonal group is the isometry group for real projective spaces.
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to find the full string spectrum [138]. This idea (of using coset structures) has been used heavily in

integrability [143] and attempts to understand fermionic T-duality, for example: Beisert, Ricci, Tseytlin

and Wolf [21] work entirely with the coset action, gauge fixing a particular κ-symmetry at the start.

They found that the dual σ-model amounts to a different choice of κ-symmetry gauge [36].

The two formulations both have their strengths and weaknesses. The main advantage of using the

RNS formalism is that quantization becomes straightforward since the action is free14 in a flat back-

ground [118,118]. There are three important disadvantages. Firstly, the RNS formalism cannot describe

superstrings on backgrounds with RR fields present because the RR vertex operators become complicated.

Secondly, the symmetry of the spectrum is not manifest. Finally, the extension of the RNS formalism

to curved spacetimes is not obvious because there is a lack of spacetime covariance [108]. The GS for-

malism does allow a covariant extension to curved backgrounds through the existence of κ-symmetry.

Furthermore, the GS superstring action may be defined classically in any background satisfying the su-

pergravity equations of motion [118]. For background fields satisfying these equations of motion, the

GS action is classically invariant under κ-symmetry, which is required for the removal of non-physical

fermionic degrees of freedom. The main disadvantage of the GS formalism is that quantization becomes

nontrivial [145, 146]. It is important to stress that in the GS formalism κ-symmetry invariance requires

that the background fields are on-shell15, whereas for the RNS formalism it is quantum Weyl invariance

that ensures this self-consistency condition [108]. This is illustrated in Figure 3.4.

Figure 3.4: Different superstring formulations require curved backgrounds to be on-shell [108].

Consider, for the moment, the maximally supersymmetric background AdS5 × S5 which is supported by

a (Hodge) self-dual RR 5-form flux. As a result, following the discussion above, the RNS formalism is

not useful in a straightforward way16. The GS formalism, being manifestly supersymmetric, appears to

be sufficient for non-vanishing RR fields [115]. Although the formal expression for the GS superstring

action (in superspace) for a generic type IIB background was presented in [116], it is not very practical for

finding the explicit form of the superstring action in terms of the coordinate fields (X,Θ)17. The maximal

supersymmetry of the AdS5×S5 background suggests that an alternative approach is needed, one which

14By free we mean that the action does not possess any interaction terms.
15By on-shell we mean that the supergravity equations of motion must be obeyed. Since supersymmetry relates

bosons to fermions, it means that you can turn any bosonic intial condition into a fermionic intial condition,
implying equality of the number of degrees of freedom for the bosonic and fermionic fields.

16Although the non-local RR vertex operator is known in flat space [114], it is insufficient for describing the
complete form of the RNS string action in curved backgrounds

17For a bosonic background, the corresponding D = 10 type IIB superfields need to be determined explicitly.
This is a very complicated problem, not yet solved for any non-trivial cases.
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exploits the special properties of this solution [117]. Over a decade ago, such an alternative approach

to constructing superstring actions was developed, which combines the advantages from the RNS and

GS formalisms [118] (see also [119, 120]). Following the RNS approach, our action reduces to a free

action for a flat background in which quantization becomes straightforward. This hybrid approach uses

spacetime spinor variables as fundamental fields, as in the GS formalism, allowing for simple RR vertex

operators [118]. The hybrid formulation is not without disadvantages either, namely, 10-dimensional

Lorentz invariance is no longer manifest [118]. For an alternative approach, see also the Pure Spinor

Formalism by Berkovits [171].

Chapter 4 uses a general approach, where we verify the self-duality of Green-Schwarz supercoset σ-model

AdS5 × S5 without gauge fixing κ-symmetry. However, we start with a very general introduction to the

most important concepts used throughout Chapter 4 and 5. Furthermore, in Chapter 5, we also consider

superstrings on the exceptional backgrounds AdSd × Sd × Sd for (d = 2, 3).
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Chapter 4

Supercoset Models

4.1 Introduction

This chapter introduces the techniques used to show T-self-duality using coset σ-models. We begin with

a very gentle introduction to the coset geometry of the S3 manifold. This allows one to introduce graded

Lie algebras, coset representatives and the currents that will build our Lagrangians. Simple examples are

provided to help expose concepts and permit intuition. Then, we provide a more formal introduction to

supercoset models and the general setup we will be using, including the T-duality procedure. Finally we

consider the example of AdS5 × S5, an exciting example with important consequences for self-duality.

4.2 The Coset Geometry of S3

As an example, we consider the coset geometry of the 3-sphere, S3, as a warm up which will lay bare

the techniques used throughout this chapter. Since the rest of the chapter is technically dense and very

messy to write down, this section will also serve an introduction to the methods used and will provide

some intuition. The backgrounds considered in Chapter 3 are called symmetric or at the very least

semi-symmetric spaces. Spaces of this nature may be described by a coset

G

H
:= {gH|g ∈ G},

where G has the interpretation of being the isometry group and H is the isotropy group1. The key idea

is that any Lie group may be described by a manifold. The elements of the corresponding Lie algebra

(i.e. the generators of infinitesimal transformations) are the tangent space elements which generate

transformations along the flat directions (i.e. in the tangent plane)2. In the end, the curved coordinates

1The isometry group captures all symmetries for which the given metric space will be invariant. The isotropy
group forms a subgroup of G that fixes a given point on H. The group is given by H = {g ∈ G|gh = h}.

2Roughly speaking, the group H is “divided” out, meaning that the symmetries of the group H do not affect
the overall geometry of the S3 and therefore the metric.
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on the manifold are related to the flat coordinates on the tangent space by the vielbein:

dya = e aµ dx
µ,

where the vielbein components are e aµ . The Latin indices represent tangent space directions whilst the

Greek indices represent curved directions. The 3-sphere, S3, is a symmetric space and may be described

by the following coset3:

S3 =
SO(4)

SO(3)
.

This means that g ∼ gh (i.e. they are equivalent) for all h ∈ SO(3) and g ∈ SO(4)/SO(3). Points on

S3 correspond to equivalence classes of the coset SO(4)/SO(3), and not to the elements g. However, we

may also represent each point on S3 by an SO(4) vector. Transformations in the SO(4) group rotate

points on the S3 to other points on the S3. One might ask why the 3-sphere is not fully described by

the SO(4) group. The reason is that, at each point on the curved manifold S3, there exists a tangent

space. The tangent space at point p on S3 consists of all rotations about p, which are described by SO(4)

vectors. Therefore, there is an entire set of rotations, in the tangent plane at any p, which leaves the

vector at that point unchanged with respect to the global S3 geometry. This is why we need to remove

the degrees of freedom which are equivalent to rotations in the tangent space, to remove redundancy, and

accurately capture the geometry of the 3-sphere. Cosets are the objects which allow us to do precisely

this: they allow us to remove unwanted degrees of freedom. Furthermore, this is the reason that points

on the 3-sphere are described by equivalence classes. Note that the 3-sphere is invariant under the action

of the SO(4) group [147].

The 3-sphere may be parametrized by a 4-vector, (σ,~v). The scalar fields, (σ,~v), transform as an SO(4)

4-vector and are subject to the constraint [147]

σ2 + ~v · ~v = R2.

In many cases, however, it is more useful to define a set of boosts (which are SO(4) transformations), L~v,

which send a given reference point (σ,~v) = (R,~0) into a general point. To illustrate this action explicitly,

we choose a representation of the SO(4) group, writing the transformations as 4×4 orthogonal matrices:

Oαβ(p) for all p ∈ SO(4). This is given by

σ =O44(L~v)R

vi =Oi4(L~v)R,

where are indices run over (4, 1, 2, 3) with i = 1, 2, 3 only. As an example, consider spherical polar

coordinates. Then the point (σ,~v) = (R,~0) gets transformed into

3In general, any n-sphere can be written as Sn = SO(n+ 1)/SO(n).
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R cos θ

R sin θ cosφ

R sin θ sinφ cosψ

R sin θ sinφ sinψ

 = L~v


R

0

0

0


when we choose L~v to be

L~v = e−iψL23e−iφL12e−iθL41 . (4.1)

It must be noted that there is an arbitrariness in the choice of the operators L~v
4. In this example we

used spherical polar coordinates, but some other transformation may be used, the important feature is

that any choice of operator must satisfy the algebra

[Lαβ , Lγδ] = δβγLαρ − δαγLβρ + δαρLβγ − δβρLαγ ,

where the operator Lαβ = −Lβα is the generator of infinitesimal rotations in the αβ-plane. Notice that

the coset representative (4.1 )contains the generator L41. This might seem odd at first since, for the

2-sphere, the infinitesimal generators were in the planes perpendicular to the chosen direction. Here we

have fixed the direction 4 and so we might expect to have planes orthogonal to the 4-direction. But

two things are happening. Firstly, in 4-dimensions orthogonality does not look the same as it does in

3-dimensions (i.e. our intuition may get us into trouble). Secondly, we might have chosen the following

transformation


R

R sin θ cosφ

R sin θ sinφ cosψ

R sin θ sinφ sinψ

 = L~v


R

0

0

0


Notice that the 4-direction remained invariant. For this case we would certainly have a very different L~v

as compared to (4.1). However, given that our choice transforms our 4-vector to a general 4-vector where

the 4-direction depends on one of the SO(3) coordinates θ, it is therefore, not unusual that it appears in

(4.1) alongside θ. There is another instance where arbitrariness arises. In four dimensions we have the

following planes

41 42 43

��14 12 13

��24 ��21 23

��34 ��31 ��32,

4This point is often glossed over in the main body of the literature. Another way make this point clear is to
notice that, choosing a coset representative is not unique. There is always some arbitrariness.
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where the crossed out planes are repetitions (i.e. 14 ↔ 41). From the third row only plane-23 remains,

so it appears in (4.1). The second row has two options, the 12-plane or 13-plane. Only one of these need

to be chosen, either choice will work and we have chosen the 12-plane. The first row presents the most

options. Here we have the 4i-planes (i = 1, 2, 3) to choose from. Again, either choice will satisfy the

algebra. We have chosen the 41-plane.

Explicitly, an SO(4) transformation may be written as

e−iθL41 =


cos θ 0 0 sin θ

0 1 0 0

0 0 1 0

− sin θ 0 0 cos θ

 .

Applying an SO(4) transformation, T , to the 3-sphere will carry the point with coordinates (θ, φ, ψ) into

the point (θ′, φ′, ψ′). In general, the coordinate transformation is given by

Oα4(L′~v) = Oαβ(T )Oβ4(L~a) = Oα4, (TL~v)

where Oαβ is a 4 × 4 orthogonal matrix and Oα4 and Oβ4 are column vectors. For an orthogonal

transformation in the 123-subspace (i.e. S ∈ SO(3)), we have

Oα4(S) = δalpha4.

As a result, we may write

Oα4(L′~vS) = Oα4(gL′~v),

which implies that gL~v = L′~vS (because gL~v and L′~vS have the same representation). Since we can find

L′~v once we know what (θ′, φ′, ψ′) are, the SO(3) transformation

S = L′−1
~v TL~v,

becomes well defined [147]. The coset formulation gives a well defined geometric description from which

geometrical objects, like the metric and vielbeins, may be found using group theory.

To compute the basis vectors for the 3-sphere consider the differential [147]

J = L−1
~v dL~v. (4.2)
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where J ∈ so(3) and d is the exterior derivative. This might seem mysterious at first glance, therefore

let us first consider the following example.

Example: Translations

Suppose we want to do a translation along the x-direction from x to x + a. Then the function f(x)

becomes f(x+ a). The transformation may be written as

T (a)f(x) = ea
∂
∂x f(x) = f(x+ a),

where ea
∂
∂x is an element of the group of translations and ∂

∂x is the generator of infinitesimal translations,

which lives in the Lie algebra of the group. The transformation is parametrized by a. In general, we have

the following

def(x) = ef(x)df,

where, in the case of a translation this becomes

d
(
ea

∂
∂x

)
= ea

∂
∂x da

(
∂

∂x

)
.

The Lie algebra element is ∂
∂x , the infinitesimal translation is da and the group element is ea

∂
∂x . Then

we can write

e−a
∂
∂x dea

∂
∂x = da

(
∂

∂x

)
.

Notice that this last equation has the same form as the differential in (4.2). It tells us that the left hand

side produces an infinitesimal translation da along the x-direction (right hand side).

This differential has a special name, it is called the Maurer-Cartan 1-form, and is special because it

satisfies the Maurer-Cartan equation. One-forms satisfying the Maurer-Cartan equations may be used to

construct a metric that preserves the isometries of the Lie group. Computing (4.2) we find

J =L−1
~v dL~v

=eiθL41eiφL12eiψL23de−iψL23e−iφL12e−iθL41

=− dθL41 − dφ(L12 cos θ + L42 sin θ)

− dψ(L23 cosφ+ (L13 cos θ − L43 sin θ) sinφ)

=− dθL41 − dφ sin θL42 + dψ sin θ sinφL43

− dφL12 − dψ cosφL23 + dφ cos θ sinφL31 (4.3)

From the expression for J we can extract the following coefficients
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eaµ =


41 42 43

θ −1 1 1

φ 0 − sin θ 0

ψ 0 0 sin θ sinφ

 (4.4)

where the labelling of rows and columns is indicated [147]. The elements in (4.4) are precisely the

components of the vielbein e aµ dx
µ. Note that small displacements are generated by the generators which

are Lie algebra valued. These generators are labelled by the plane (ij) that they rotate in. Thus, (4.4)

tells us which generator generates a given small displacement. As an example, making a small rotation

in the 41-plane means you will change the value of θ. From the vielbeins, we can write down the metric

as follows

ds2 =(dθeαθ + dφeαφ + dψeαψ)2

=dθ2 + sin θ2dφ2 + sin θ2 sinφ2dψ2 (4.5)

which is expected for S3 in polar coordinates.

4.3 The General Setup

In this section we recall some basic facts about superstring coset σ-models. We also lay the foundation

required to study the T-dualisation of these σ-models. The Green-Schwarz action of a superstring that

propagates in a 10-dimensional background is given by [116]

S = −T
2

∫
Σ

(?EA ∧ EBηAB + 2κB2), (4.6)

where T denotes the string tension, Σ represents the 2-dimensional worldsheet with curved metric hpq(τ, σ)

having Lorentz signature such that the corresponding worldsheet Hodge duality operation ? squares to

one (?2 = 1) when acting on 1-forms5. The EA = EA(X,Θ) are vector space supervielbeins for all

A,B = 0, ..., 9 where (X,Θ) are target space coordinates (10 Grassmann-even (or bosonic) coordinates

X and 32 Grassmann-odd (or fermionic) coordinates Θ). The metric ηAB is the 10-dimensional target

space Minkowski metric. Additionally, there are spinor supervielbeins E α̂ = E α̂(X,Θ) for α̂, β̂ = 1, ..., 32

which also describe the geometry of the full 10-dimensional superstring. Finally, B2 is the NSNS 2-form

flux and we consider models for which B2 has vanishing field strength at Θ = 0, or dB2|Θ=0 = 0.

We want to study backgrounds which are symmetric or semi-symmetric6 . These manifolds M may be

described by a coset

5In local coordinates (i.e. (τ, σ)) on σ, ?EA ∧ EB =
√
−dethrsh

pqEAp ∧ EBq
6Semi-symmetric backgrounds have vanishing NSNS flux and a Lie algebra which admits a Z4-grading with

accompanying automorphism Ω : G→ G and fixed point set H. This means that Ω4 = 1 and Ω(H) = H.
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Z4-graded Coset Superspaces

Background Type d Superspace Coset nb + nf
5 AdS5 × S5 PSU(2,2|4)

SO(1,4)×SO(5)
10 + 32

α = 0 3 AdS3 × S3 PSU(1,1|2)×PSU(1,1|2)
SU(1,1)×SU(2)

6 + 16
2 AdS2 × S2 PSU(1,1|2)

SO(1,1)×U(1)
4 + 8

3 AdS3 × S3 × S3 D(2,1;α)×D(2,1;α)
S0(1,2)×SO(3)×SO(3)

9 + 16
0 < α < 1 2 AdS2 × S2 × S2 D(2,1;α)

S0(1,1)×SO(2)×SO(2)
6 + 8

Table 4.2: The cosets corresponding to the various backgrounds for 0 ≤ α < 1. Here nb and nf
are the number of bosonic and fermionic coordinates, respectively.

M :=
G

H
,

as mentioned in the previous section. The Green-Schwarz action describes a semi-symmetric space,

therefore, it admits a Z4-automorphism and there exists a truncation of the Green-Schwarz action to a

supercoset σ-model7.

4.3.1 Maurer-Cartan Forms and Z4-graded Coset Superspaces

The Z4-automorphism (or grading) Ω : G → G induces an automorphism on the corresponding Lie

superalgebra g of G, which we will also denote by Ω : g → g. This automorphism implies that we may

decompose the Lie algebra g as follows

g u g(0) + g(1) + g(2) + g(3).

As a result, the eigenspaces of may also be decomposed as follows

Ω(Vm) = imV(m) for V(m) ∈ g(m).

The Lie algebra g contains the generators which generate all possible transformations that leave the

metric invariant. The superalgebra elements satisfy the commutators: [g(m), g(n)] ⊆ g(m+n mod 4), where

g(0) is the Lie algebra of H. Table 4.2 contains all the Z4-graded coset Superspaces considered herein.

Note that the d = 5 coset describes the full superstring. For d = 2, 3, the cosets listed in Table 4.2

describe those subsectors of the full superstring theory in which the non-supersymmetric fermions have

been removed.

There is also a Z2-grading on g because we are dealing with a superspace and this means that we have

both bosonic and fermionic generators. This divides all the generators into two subgroups, one containing

the bosonic generators g(0) and g(2), and one containing the fermionic generators g(1) and g(3). For a

detailed discussion on the general properties of the Lie superalgebra associated with the Lie supergroups

7For backgrounds which posses at least 16 supersymmetries, their corresponding σ-model can be viewed as a
κ-symmetry gauge fixing of the full superstring.
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considered in Table 4.2, see [148].

To define the Maurer-Cartan form we consider maps of the form g : Σ → G from the 2- dimensional

worldsheet Riemann surface Σ onto G. Then, we introduce the pull-back8 to Σ via g of the Maurer-Cartan

form by

J := g−1dg,

where the exterior derivative is given by d and in our conventions it acts from the right. By construction,

J is a g-valued differential 1-form, which satisfies the Maurer-Cartan equation

dJ − J ∧ J = 0.

The Maurer-Cartan Equation

We constructed the general Maurer-Cartan form J to satisfy the Maurer-Cartan equation. In this aside

we show how this can be proved. Start with the definition

J = g−1dg

and take the derivative

d(g−1dg) = dg−1 ∧ dg + g−1d2g = −g−1dgg−1 ∧ dg = −g−1dg ∧ g−1dg

which is just dJ = J ∧ J =⇒ dJ + JJ = 0 and we used that dg1 = (g−1dg)g−1 and d2g = 0.

To gain some intuition about why J is a 1-form, consider the following. We may write

J = g−1dg = fudx
µ

where the fµ are the components of the one formJ . Because d is an exterior derivative, J is a 1-form and

under a change in coordinates, fµ transforms exactly like something with a lower index should. However,

it deserves a special name because it is not a number. It is an element of the Lie algebra g, that is,

a matrix. These forms are called Lie algebra valued (one) forms. Then pullback in the usual way, for

example, if xµ are spacetime coordinates and σA are the worldsheet coordinates, then

fA = fµ
∂xµ

∂σA
.

8Roughly speaking, suppose you have a map defined by φ : X → Y and f is a form defined on Y , then the
pull-back φ ∗ (f) : Y → X is the form on X whose value at x ∈ X is the value of f at φ(x) ∈ Y . That is, the form
on Y defines a form on X.
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The 1-form J is invariant under global left G-transformations9 g0g → g for g0 ∈ G. The Z4- automorphism

Ω : g→ g allows us to decompose J into the eigenspaces of Ω according to

J = J(0) + J(1) + J(2) + J(3), with Ω(J(m)) = imJ(m).

The map Ω is the set of all Z4 transformations. Hence, the algebra can be thought of as a vector space

and as a result the algebra may be decomposed into the eigenspaces of the map Ω as shown above. This

is equivalent to a matrix acting on some vector space where you are able to use the eigenvectors of the

matrix as a basis. Under local right H -transformations10 gh→ g for h ∈ H, the J(0) term is a g(0)-valued

connection 1-form (i.e. J(0) ∈ Lie(H)). The H-transformations do not move physical points around in the

spacetime (i.e. recall that these are transformations in the tangent space at each point which therefore

leaves the point invariant with respect to H). Therefore, there is some redundancy in this description.

Using bosonic and fermionic supervielbeinsJ(m) where m = 1, 2, 3, the supercoset action may be defined.

It has the following form

S = −T
∫

Σ

LG/H = −T
2

∫
Σ

Str(?J(2) ∧ J(2) + J(1) ∧ J(3)) (4.7)

where Str denotes the supertrace. It is compatible with the Z4-grading

Str(V(m)V(n)) = 0 (4.8)

for V(m) ∈ g(m) and m + n mod 4. For the non-exceptional cases, the relative coefficients of the two

terms in (4.7) are fixed by κ-symmetry. However, for the exceptional cases these coefficients are not fixed,

therefore lacking κ-symmetry invariance [125, 149]. Instead, the coefficients are fixed by integrability

conditions belonging to the respective σ-model. Comparing (4.7 ) to the Green-Schwarz action in (4.6)

we can see that the Wess-Zumino term in (4.7), i.e. the second term in the action, is given by B2 in (4.6).

Thus

B2 =
1

2
Str(J(1) ∧ J(3)).

The g(0) - valued forms are scalars (or invariant) under the ZZ4 - automorphism because the automorphism

takes G into G and g(0) ∈ H. Therefore, these are the Lie algebra elements that generate displacements

in the coordinates, for example. These elements form the connection and transform as follows

J(0) → h−1J(0)h+ h−1dh.

The J(m)’s for m = 1, 2, 3 transform adjointly as follows

9By global we mean that we use the same G transformation at each point on the manifold.
10By local we mean that a different transformation is applied at each point on the manifold.
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J(m) → h−1J(m)h.

These Lie algebra elements do not generate coordinate displacements, they act more like internal symme-

tries. The physical fields will take values in the coset superspaceG/H = gH|g ∈ G, thus the corresponding

action (geometry) must be invariant under such local H - transformations. This is a reminder that the

H- transformations do not move physical fields around. In turn the action may only contain J(m) for

m = 1, 2, 3. These are precisely those terms that combine to form Casimirs11 in order to return an action

with the correct symmetries for the problem being studied. The coset removes all trivial rotations (i.e.

those leaving a point invariant).

The coset G/H is parametrised by db bosonic local coordinates X and df fermionic local coordinates ϑ,

where db + df = dim(G/H) = dim(G)− dim(H). The maps considered here are

(X, ϑ) : Σ→ G/H.

The bosonic supervielbein is given by JJ(2) whilst the fermionic supervielbeins are given by J(1) and J(3).

4.3.2 Choosing a Z4-grading

The Z4-grading and its decomposition into Abelian sub-isometries must be chosen with care. If an

inappropriate choice is made one cannot successfully apply the T-duality transformations. Thus, making

the proof of self-duality complicated, if at all possible. To write down the grading first decompose the

R-symmetry generators into R = (R(0), R(2)) with R(0) ∈ g(0) and R(2) ∈ g(2). Then the Z4-grading we

use is written as follows:

g(0) := 〈P +K,M,R(0)〉, g(2) := 〈P −K,D,R(2)〉

g(1) := 〈Q− S, Q̂− Ŝ〉, g(3) := 〈Q+ S, Q̂+ Ŝ〉. (4.9)

The specific decomposition of R will be discussed in the next section. The sub-algebras g(0) and g(2)

contain bosonic symmetry generators, whilst g(1) and g(3) contain the fermionic symmetry generators.

4.3.3 Schematic Form of the Superconformal Algebra

The T-dualisation of the action (4.7) is performed along some bosonic and fermionic directions. These

T-duality transformations correspond to an (anti-) commuting subgroup of isometries belonging to the

underlying supercoset space. These isometries are identified through a choice of basis obtained from

the Lie superalgebra g of G. Associated with this basis is the superconformal group on the Minkowski

11Casimirs are combinations of Lie algebra elements that commute with everything else in the Lie algebra. For
example, consider SO(3). Here, the algebra is made up of {Lx, Ly, Lz} and the Casimir is ~L · ~L.
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Symmetries and their Generators

Symmetry Generator N Type

Translations P d− 1 R1,d−2

Lorentz Boosts M 1
2(d− 1)(d− 2) R1,d−2

Conformal K d− 1 R1,d−2

Dilatation D 1 R1,d−2

R-symmetry R 2 AdSd × Sd

Fermionic Q, Q̂, S, Ŝ 2(d− 1) AdSd × Sd

Table 4.4: Symmetries and their number of associated generators, N .

conformal boundary, R(1,d2) of the AdSd space [36]. We may describe the basis for g schematically as

[P,K] ∼ D +M, [D,P ] ∼ P, [D,K] ∼ K, [M,P ] ∼ P

[M,K] ∼ K, [M,M ] ∼M, [R,R] ∼ R, (4.10)

where we have chosen not to display vanishing commutators.

In the superconformal extension of (4.10) we find the fermionic generators listed in Table 4.4. These are

the complex supersymmetry and superconformal generators [36]. The hatted and ordinary generators

are related by Hermitian conjugation. The non vanishing commutators are given, schematically, by

[D,Q] ∼ Q , [M,Q] ∼ Q , [K,Q] ∼ Ŝ , [R,Q] ∼ Q+ αQ̂ ,

[D,S] ∼ S , [M,S] ∼ S , [P, S] ∼ Q̂ , [R,S] ∼ S + αŜ , (4.11)

and similarly for the hatted generators. The anti-commutators are

{Q, Q̂} ∼ P , {S, Ŝ} ∼ K , {Q, Ŝ} ∼ αR , {Q̂, S} ∼ αR

{Q,S} ∼ D +M +R , {Q̂, Ŝ} ∼ D +M +R .
(4.12)

Note that the α in the above (anti-) commutators is precisely the same one appearing in Table 4.2. The

non-exceptional cases are obtained from the exceptional cases (i.e the last two entries in Table 4.2) by

taking the limit α→ 0. Therefore g = 〈P,K,D,M,R,Q, Q̂, S, Ŝ〉.

4.3.4 Coset Representative and Associated Current

For the non-exceptional cases (α = 0), the form of the supersymmetry algebra (4.10), (4.11) and (??)

imply that the generators P and the complex supercharges Q are in involution12. Thus, the maximal

Abelian subalgebra of g is just 〈P,Q〉, this means that the (anti-) commuting isometries of the G/H σ-

12If two things are in involution, they commute. This means that they can define an Abelian algebra.
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model are associated with 〈P,Q〉. For the exceptional cases (α 6= 0), the situation is trickier. The maximal

Abelian subalgebra of g is now generated by P and Q in addition to some R-symmetry generators, denoted

by L+. The latter generator is complex with Hermitian conjugate denoted by L. For d = 2 there is one

such generator given by L+ ≡ L1
+, whilst for d = 3 there are two generators given by L+ ≡ L1,2

+ . Thus,

the (anti-) commuting isometries in the exceptional cases are associated with 〈P,Q,L+〉. Then

[L1
+, L

1
−] ∼ L3 ∼ [L2

+, L
2
−].

With respect to the Z4-grading (4.9), we find that L1
++L1

− and L2
+−L2

− belong to g(0). On the other hand,

L1
+ −L1

−, L2
+ +L2

− and L3 belong to g(2). This is the grading we chose here. Using this information, we

are able to see that in order to perform T-dualisation on the supercoset action (4.7) along the isometries

that we have already mentioned, we take the supercoset representation g in the form following [21,22,125]

g := exP+θQ+
√
αλ+L+eBeξS , eB := eθ̂Q̂+ξ̂Ŝ |y|De−

√
αλ3L3Λα(y) , (4.13)

where x are the coordinates of the Minkowski boundary and |y| is related to the radial direction in AdSd.

In the non-exceptional case (α = 0) the coordinates y parametrize the sphere Sd. In the exceptional

cases (α 6= 0), one Sd is parametrized by y and the second by λ+ and λ3. These coordinates, λ+ and λ3,

are assumed to be complex. The specific form of the Λ(y) will depend on the underlying geometry that

is used. The Grassman-odd directions of the coset superspace are parametrized by 2(d − 1) fermionic

coordinates (θ, θ̂, ξ, ξ̂). The form of (4.13) was achieved using local right H - transformations. Also,

because P , Q and L+ are in involution our choice of coset representative guarantees that the action (4.7)

depends on x, θ and L+ alone. It depends on the latter coordinates through their derivatives dx, dθ and

dL+.

As we have mentioned the proof of self-duality of the supercoset σ-models (4.7) under bosonic and

fermionic T-duality has up till now been performed by fixing κ-symmetry gauge [36,38,39,65,108,125,126].

The most convenient choice is setting ξ = 0 [21, 22, 125]. However, there is a problem, if the supercoset

model has been gauge fixed with respect to the associated superstring action, then κ-symmetry has

already been used to set the non-supersymmetric fermions to zero. As a result, κ-symmetry gauge fixing

can no longer be used in the T-dualisation procedure. The situation is more severe when dealing with the

exceptional backgrounds where the rank of the κ- symmetry is zero (i.e. none of the non-supersymmetric

fermions can be set to zero) [37,125,149]. Thereby motivating our choice to study these σ-models without

fixing κ-symmetry gauge. All fermionic coordinates in (4.9) will be considered. With respect to (4.13),

the Mauer Cartan current has the following form

J = g−1dg = e−ξSJ (0)eξS + dξS , (4.14)

where J(0) is the current at ξ = 0. For a detailed list of the components of J and their explicit forms,

see [36]. However, schematically the components of J are
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JP = J
(0)
P , JQ = J

(0)
Q , JL+ = J

(0)
L+

,

JD = J
(0)
D + J

(0)
Q ξ , JM = J

(0)
M + J

(0)
Q ξ ,

JR = J
(0)
R + J

(0)
Q ξ , JL3 = J

(0)
L3

+ αJ
(0)
Q ξ ,

JQ̂ = J
(0)

Q̂
+ J

(0)
P ξ , JŜ = J

(0)

Ŝ
+ αJ

(0)
L+
ξ ,

JK = J
(0)

Ŝ
ξ + αJ

(0)
L+
ξ2 , JL− = αJ

(0)

Q̂
ξ + αJ

(0)
P ξ2 ,

JS = dξ + (J
(0)
D + J

(0)
M + J

(0)
R + αJ

(0)
L3

)ξ + J
(0)
Q ξ2 .

(4.15)

Here the current J depends at most on ξ quadratically. This is very important as it simplifies the

T-dualisation procedure significantly.

4.3.5 The T-duality Procedure

Proceeding as in [22,150], the non-exceptional cases are T-dualised along x and θ. The exceptional cases

are T-dualised along x, and +, following [125]. In the standard procedure [12,13,129] we start with the

supercoset σ-model13 and then substitute

(dx,dθ,dλ+) 7→ (Ab, Af , A+).

These field redefinitions modify the action in the following way

S = S[(dx, dθ,dλ+) 7→ (Ab, Af , A+)] +

∫
Σ

(
x̃dAb + θ̃dAf +

√
α λ̃+dA+

)
. (4.16)

The auxiliary fields {Ab, Af , A+} are differential 1-forms and {x̃, θ̃, λ̃+} are Lagrange multipliers ensuring

that

dAb = d2Ab = 0, dAf = d2Af = 0, dAλ+ = d2Aλ+ = 0, (4.17)

since {Ab = dx,Af = dθ,A+ = dλ+} and d2 = 0. As a result (see Part I), when we integrate out the

Lagrange multipliers we recover the original σ-model action. To find the T-dualised action S̃ out the

differential 1-forms {Ab, Af , A+} instead. A simplification can be made [36]

e−B
(
AbP +AfQ+

√
αA+L+

)
eB = A′bP +A′fQ+

√
αA′+L+ (4.18)

when performing this operation, since the Abelian algebra 〈P,Q,L+〉 is invariant under conjugation by

eB . We may thus write (4.18) as

13The form of this action in terms of the decomposition of Jcan be found in [36], equation (??).
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AbP +AfQ+
√
αA+L+ = eB

(
A′bP +A′fQ+

√
αA′+L+

)
e−B . (4.19)

Consider the following field redefinitions

(Ab, Af , A+) 7→ (A′bP ,A′fQ ,
√
αA′+L+),

then Ab = dx, Af = dθ, A+ = dλ+ and (4.15) imply that A′b = JP , A
′
f = JQ, and A′+ = JL+

[36]. Next,

substitute

Ab =
[
eB
(
A′bP +A′fQ+

√
αA′+L+

)
e−B

]
P
,

Af =
[
eB
(
A′bP +A′fQ+

√
αA′+L+

)
e−B

]
Q
,

A+ =
[
eB
(
A′bP +A′fQ+

√
αA′+L+

)
e−B

]
L+
,

(4.20)

into (4.16) and integrate out {A′b, A′f , A′+} to obtain the T-dualised action S̃. Our next goal is to illustrate

that S̃ is the Green-Schwartz model in (4.7), with the new coordinates associated with the new choice of

coset representative

g̃ := ex̃K+θ̃M−1S+
√
α λ̃+L−eBeF (ξ) , (4.21)

where M := (QS) and eB is given in (4.13). The term F (ξ) depends on the background under consider-

ation. For AdS5 it is given by

F (ξ) ∼ −
[
ξ + ξ5

]
Q+

[
ξ3 + ξ7

]
S . (4.22)

For the AdS2 cases, we have F (ξ) = ξQ and for AdS3, we have that F (ξ) = ξQ + ξ3S. Due to the

presence of F (ξ) in (4.21), the J̃ = g̃−1dg̃ arising from (4.21) will generally not contain quadratic terms

of fermionic coordinates ξ. Finally, through further complicated field redefinitions (x, θ) → (x′, θ′) we

can bring the dual coset element (4.21) into the form of (4.13)

g̃ = ex̃
′K+θ̃′M−1S+

√
α λ̃′+L−eB

′
e−ξ

′Q .

4.4 Example: AdS5 × S5 Self-duality

The AdS5×S5 superstring is probably the most important example in the thesis outside of the less than

maximal supersymmetric cases, which are the focus of this thesis. In this section we show that AdS5×S5

is self-dual in a κ-covariant way. That is, we have considered all fermionic directions. This result is

exciting because it proves that AdS5 × S5 is exactly self-dual.
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4.4.1 Supercoset Action

The AdS5 × S5 superspace is accompanied by the following coset

PSU(2, 2|4)

SO(1, 4)× SO(5)

This coset describes the full type IIB AdS5 × S5 background, which is parametrized by ten bosonic

coordinates (XM ) = (xm, |y|, yâ) with m,n, ... = 0, ..., 3 and â, b̂, ... = 5, ..., 9. Additionally there are two

16-component Majorana-Weyl spinor coordinates Θi = 1
2 (1 + Γ11)Θi with i, j, ... = 1, 2. Both spinors

have the same chirality. With this parametrization, we write the line element for AdS5 × S5 as

ds2 =
1

|y|2
(dxmdxnηmn + dyâdyâ + dŷdŷ) , (4.23)

where |y|2 = (yâyâ + ŷŷ). The maximally supersymmetric background is supported by the following

non-vanishing 5-form components

F01234 = −F56789 = 4, (4.24)

or, equivalently

F5 = 4(1 + ∗) VolAdS5
= 4 (1 + ∗) e0 ∧ · · · ∧ e4 (4.25)

and a dilaton that we set to zero for simplicity.

Lie Superalgebra and Cartan Forms

The general form of a Lie superalgebra for a symmetric space was given in [121]. Inserting (4.25) into

this algebra yields the following form of the psu(2, 2|4) superalgebra

= ηACMBD − ηADMBC − ηBCMAD + ηBDMAC ,

[PA, PB ] = − 1
2RAB

CDMCD ,

[MAB , PC ] = ηACPB − ηBCPA , [MAB ,Qαi] = − 1
2 (QΓAB)αi ,

[PA,Qαi] = − 1
2 (QεΓ01234ΓA)αi ,

{Qαi,Qβj} = iδij(Γ
A)αβ PA − i

2εij(Γ
AΓ01234ΓB)αβMAB ,

(4.26)

where εij = εji and ε12 = 1. (MAB) = (Mab,Mâb̂) with a, b, ... = 0, ..., 4 and â, b̂, ... = 5, ...9 generate the

SO(1, 4)×SO(5) rotations, whilst (PA) = (Pa, Pâ) generate the AdS5×S5 translations. The curvature of
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AdS5 and S5 are given by Rcdab = 2δc[aδ
d
b] and Rĉd̂

âb̂
= −2δĉ[âδ

d̂
b̂]

, respectively [36]. The Qαi are supercharges.

For details on the superconformal form of the Lie superalgebra consult [36]. Finally, the corresponding

Maurer-Cartan form is

J(X,Θ) = 1
2ΩABMAB + EAPA + EαiQαi, (4.27)

which is made from the super-connection ΩAB(X,Θ)and the supervielbeins EA(X,Θ) and Eαi(X,Θ).

The psu(2, 2|4) Lie superalgebra in superconformal form (4.10), (4.11) and (4.12) can be written down by

defining new bosonic and fermionic generators. The bosonic generators are (a = m, 4 with m = 0, .., 3)

D := P4 , Pm := Pm +Mm4 , Km := −Pm +Mm4 ,

Mmn , Râ := Pâ , Râb̂ := −Mâb̂.
(4.28)

The fermionic generators are now defined by

Q := − 1√
2
(Q1−iQ2)P+ , Q̂ := − 1√

2
(Q1+iQ2)P− ,

S := 1√
2
(Q1+iQ2)P+ , Ŝ := 1√

2
(Q1−iQ2)P− ,

(4.29)

with projection operators given by

P± := 1
2 (1± iΓ0123).

The commutation relations for these generators can be found in [36]. The corresponding basis provides

the following non-zero components of the invariant form on psu(2, 2|4)

Str(KnPm) = −2ηmn , Str(DD) = 1 , Str(SαQβ) = 2i(Γ4P+)αβ .

Currents and the Supercoset Action

Given the parametrization we have chosen, the coset representative (4.13) becomes

g := ex
mPm+θαQαeBeξ

αSα , eB := eθ̂
αQ̂α+ξ̂αŜα |y|Dey

âRâ/|y|. (4.30)

As a consequence of the definitions in (4.29), the fermionic variables satisfy the following projection

relations P+θ = θ, P+ξ = ξ, P−θ̂ = θ̂ and P−ξ̂ = ξ̂. Following the general setup in Section 4.3, we can

derive the form of the Lie superalgebra currents explicitly [36]. Using the commutation relations in [36],

we can obtain the components of the current (4.14). Those independent of ξ are
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JPm =
[
e−B(dxnPn + dθQ)eB

]
Pm

, JQα =
[
e−B(dxnPn + dθQ)eB

]
Qα

,

JŜβ =
[
e−BdeB

]
Ŝβ
.

(4.31)

The components depending linearly on ξ are given by

JKm = −i(Γmξ)α JŜα , JD = J
(0)
D − i(Γ4ξ)αJQα , JRâ = J

(0)
Râ
− i(Γâξ)αJQα ,

JQ̂ = J
(0)

Q̂
+ (Γm4ξ)

αJPm ,

JMmn
= J

(0)
Mmn

− i
2 (ξΓmnΓ4)α JQα , JRâb̂ = J

R
(0)

âb̂

− i
2 (ξΓâb̂Γ4)α JQα ,

(4.32)

where the label (0) indicates those terms independent of ξ (i.e. for which ξ = 0). Finally there is a

current which depends quadratically on ξ

JSα = dξα − 1
2ξ
αJ

(0)
D − 1

2 (Γmnξ)
αJ

(0)
Mmn

+ 1
2 (Γâ4ξ)

αJ
(0)
Râ

+ 1
2 (Γâb̂ξ)αJR(0)

âb̂

+ SαβJQβ

=: J
(1)
Sα

+ SαβJQβ ,
(4.33)

where we define

Sαβ := i
4ξ
α(ξΓ4)β + i

4 (Γ4Γâξ)
α(ξΓâ)β + i

8 (Γmnξ)
α(ξΓmnΓ4)β − i

8 (Γα
âb̂ξ)

(ξΓâb̂Γ4)β , (4.34)

for which ST = −Γ4SΓ4. Comparing the Maurer-Cartan current (4.27) with the coset expression in [36]

and utilizing the definition of the superconformal generators in (4.28) and (4.29) in terms of the 10-

dimensional ones, we are able to write down the relation between the 10-dimensional geometric objects

and the components of the supercoset current J . Explicitly,

Em = JPm − JKm , E4 = JD , Eâ = JRâ ,

Ωmn = 2JMmn
, Ωm4 = JPm + JKm , Ωâb̂ = −2JRâb̂

(4.35)

and

E1 = 1√
2
(JS + JŜ − JQ − JQ̂) , E2 = i√

2
(JS − JŜ + JQ − JQ̂). (4.36)

Since E1 = J(1) and E2 = J(3), E
1 and E2 have Z4-gradings 1 and 3, respectively. Then, using (4.31)

- (4.33) and the Lagrangians from Section 4.3 for the PSU(2, 2|4) supercoset model, the resulting La-

grangian takes the following form
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L = 1
2∗E

A ∧ EBηAB − iE1 ∧ Γ01234E2

= 1
2∗(JPm − JKm) ∧ (JPn − JKn)ηmn + 1

2∗JD ∧ JD + 1
2∗JRâ ∧ JRâ −

− i
2JS ∧ Γ4JS − i

2JŜ ∧ Γ4JŜ + i
2JQ ∧ Γ4JQ + i

2JQ̂ ∧ Γ4JQ̂.

(4.37)

Note that we have used (4.36) and the projection properties belonging to the generators (4.29). The

NSNS 2-form B2 = iE1 ∧ Γ01234E2 was calculated from the type IIB supergravity constraints associated

with the background (4.25).

4.4.2 T-duality Transformations

Our goal in this section is to T-dualise along xm and θα, that is, all the bosonic and fermionic directions.

To do so, we follow the steps detailed in Section 4.3 and then introduce the auxiliary 1-form fields A′m and

A′α given in (4.18). Using this information together with the dual variables x̃m and θ̃α the Lagrangian

takes the following form

L = L1 + L2 + L3 (4.38)

where

L1 := 1
2∗A

′
m ∧A′nηmn − 1

2A
′m ∧A′nMmn +A′m ∧ Jm,

L2 := i
2A
′α ∧A′βNαβ − i

2∗A
′α ∧A′β(NL)αβ +A′α ∧ Jα,

L3 := 1
2∗JKm ∧ JKnηmn + 1

2∗J
(0)
D ∧ J (0)

D + 1
2∗J

(0)
Râ
∧ J (0)

Râ
− (4.39)

− i
2J

(1)
S ∧ Γ4J

(1)
S − i

2JŜ ∧ Γ4JŜ + i
2J

(0)

Q̂
∧ Γ4J

(0)

Q̂
.

We also have

Jm := −dx̃n
[
eBPme−B

]
Pn
− dθ̃α

[
eBPme−B

]
Qα

+ iJ
(0)

Q̂
Γmξ + ∗JKm ,

Jα := −dx̃m
[
eBQαe−B

]
Pm

+ dθ̃β
[
eBQαe−B

]
Qβ
−

−i∗J (0)
D (Γ4ξ)α − i ∗ J (0)

Râ
(Γâξ)α − i(J (1)

S Γ4S)α (4.40)

and

MAB := iξΓABΓ4ξ ,

Nαβ :=
(
Γ4(1 + S2)

)
αβ

, (NL)αβ := i(Γ4ξ)α(Γ4ξ)β + i(Γâξ)α(Γâξ)β . (4.41)
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L̃ = L̃1 + L̃2 + L3 (4.42)

with

L̃1 := 1
2∗J

m ∧ J n[(η −M2)−1]mn + 1
2J

m ∧ J n[M(1−M2)−1]mn,

L̃2 := i
2J ∧ (N −NL2)−1J + i

2∗J ∧ L(N −NL2)−1J . (4.43)

and L3 is the same as before14. We can simplify L̃1, then we may write it as (see [36] for details)

L̃1 = 1
2 (1− 1

4Mâb̂M
âb̂)−1

(
∗Jm ∧ J nηmn + Jm ∧ J nMmn

)
.

To complete the self-dualisation process, we would like to cast the dual Lagrangian in the form of the

original Lagrangian15. The result of this action are the new expressions for the currents Jm and Jα

Jm = J̃
(1)
Pm
− J̃ (0)

Km
+ ∗JKm ,

Jα = i(Γ4J̃
(0)
S )α − iJ

(1)
Sβ

Γ4
βγSγα − i∗J (0)

D (Γ4ξ)α − i∗J (0)
Râ

(Γâξ)α .
(4.44)

The new (dual) choice of coset representative which leads to the Maurer-Cartan forms16 is given by

J̃ = g̃−1dg̃ , g̃ := ex̃
nKn−iθ̃Γ4SeBe−(ξQ+SαSαβξβ)(1− 1

4Mâb̂M
âb̂)−1

, (4.45)

Our goal is to show that Lg = Lg̃, therefore we need to show that g ∼ g̃. Through a complicated change

of variables [36], the dual coset element (4.45) can be brought into the same form as the original coset

element (4.30). This means that the last exponent to the right takes the form17 e−ξ
′Q, similar to g. The

dual coset element becomes

g̃ u ex̃
′nKn−iθ̃′Γ4SeB

′
e−ξ

′Q, (4.46)

where eB
′

= eBe−
i
2D(ξΓ4Sξ+O(ξ8))− i

2Râ ξΓ
âSξ, x̃′n = x̃n + fn(y, θ̂, ξ̂, ξ), θ̃′α = θ̃α + fα(y, θ̂, ξ̂, ξ) and fn and

fα are functions of the coordinates yα̂ of S5, the radial direction |y| of AdS5 and the Grassmann-odd

coordinates θ̂, ξ̂, and ξ. The choices (4.45) and (4.46) have associated Z4 - automorphism

14L is a function of currents not involved in the T-dualisation process and therefore remains invariant under
dualisation.

15For details see [36].
16Found in (3.21) in [36].
17Details may be found in [36].
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Pm ↔ Km , D → −D, Râ → −Râ,

S → −iQ , Ŝ → −iQ̂, Q → −iS , Q̂→ −iŜ
(4.47)

of the psu(2, 2|4) Lie superalgebra. The choice (4.45) of the dual element g̃, tells us that the ξ-independent

components J̃
(0)
Q , J̃

(0)

Ŝ
, J̃

(0)
D , J̃

(0)
Râ

, J̃
(0)
Râb̂

and J̃
(0)
Mmn

of the currents are the same as the ones without tilde,

whereas the full expressions for the dual currents J̃m, J̃Km , J̃Ŝ , and J̃Q̂ are

J̃Pm = J̃
(1)
Pm

(
1− 1

4Mâb̂M
âb̂
)− 1

2 ,

J̃Km = (J̃
(0)
Km
− JKlMl

m)
(
1− 1

4Mâb̂M
âb̂
)− 1

2 ,

J̃Ŝ= J̃
(0)

Ŝ
+ J̃Km(Γ4Γmξ) +

1

2
JKnMnm(Γ4Γmξ)

(
1 + 1

16Mâb̂M
âb̂
)
,

J̃Q̂= J̃
(0)

Q̂
+ 1

2 J̃
(1)
Pm

(Γ4Γnξ)Mnm

(
1 + 3

16Mâb̂M
âb̂
)
.

(4.48)

Similarly, the dual currents J̃R̂a = (J̃D , J̃Râ), J̃Q and J̃S are

J̃Ra = J̃
(0)
Ra
− i(J̃

(0)
S Γ4 − J (1)

S Γ4S)(N −NL2)−1Γaξ + i
2J

(0)
Rb
ξΓaL(N −NL2)−1Γbξ

− 1
2 (J̃

(0)
S + SJ (1)

S )Γbξ(ξΓ
bLΓ4Γaξ) + 1

8J
(0)
Rc
ξΓbLΓ4Γaξ(ξΓbLΓ4Γcξ),

J̃Q=
[
N2(1− L2)

]− 1
2 (J̃

(1)
Q − SJ̃ (0)

S ) , J̃
(1)
Q = −J (1)

S − J (0)
Ra

(Γ4Γaξ),

J̃S=
[
N2(1− L2)

]− 1
2
[
J̃

(0)
S − SJ̃ (1)

Q + (2S − Γ4NL)J
(1)
S

]
.

(4.49)

Then, upon substituting the first two equations in (44.48) into (4.44), we get the following expression for

Jm

Jm = (J̃Pm − J̃Km)(1− 1
4Mâb̂M

âb̂)
1
2 + ∗JKm − JKnMm

n . (4.50)

Using (4.48) and (4.49), we find the relations

− i
2 J̃ŜΓ4J̃Ŝ + i

2 J̃
(0)

Ŝ
Γ4J̃

(0)

Ŝ
= J̃

(0)
Km

JKnηmn + 1
2 J̃Km J̃KnMmn − 1

2JKmJKnMmn (4.51)

and

1
2 J̃Pm J̃PnMmn = i

2 J̃Q̂Γ4J̃Q̂ −
i
2 J̃

(0)

Q̂
Γ4J̃

(0)

Q̂
. (4.52)

Furthermore, combining (4.50), (4.51) and (4.52) with the Lagrangians L̃1 and L3, it follows that L̃+L3

has the following form
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L̃1 + L3 = 1
2∗(J̃Pm − J̃Km) ∧ (J̃Pn − J̃Kn)ηmn − i

2 J̃Ŝ ∧ Γ4J̃Ŝ + i
2 J̃Q̂ ∧ Γ4J̃Q̂ +

+ 1
2∗J

(0)
D ∧ J (0)

D + 1
2 ∗ J

(0)
Râ
∧ J (0)

Râ
− i

2J
(1)
S ∧ Γ4J

(1)
S −

− J̃Km ∧ J̃PnMmn − J̃ (1)
Pm
∧ JKnηmn .

(4.53)

Additionally, using the first equation in (4.49), we find that the Lagrangian L̃2 becomes

L̃2 = 1
2∗J̃Ra ∧ J̃Ra −

1
2∗J

(0)
Ra
∧ J (0)

Ra
−

− i
2

(
J̃

(0)
S + SJ (1)

S

)
∧ (N −NL2)−1

(
J̃

(0)
S + SJ (1)

S

)
+ iJ

(0)
Ra
∧
(
J̃

(0)
S + SJ (1)

S

)
Γ4L(N −NL2)−1Γaξ+

+ i
2J

(0)
Ra
∧ J (0)

Rb
ξΓa(N −NL2)−1Γbξ .

(4.54)

Using the above equations (4.53) and (4.54), we obtain

L̃ = L̃1 + L̃2 + L3 = Lg̃ + L′ + L′′, (4.55)

where

Lg̃ := 1
2∗(J̃Pm − J̃Km) ∧ (J̃Pn − J̃Kn)ηmn + 1

2∗J̃D ∧ J̃D + 1
2∗J̃Râ ∧ J̃Râ

− i
2 J̃S ∧ Γ4J̃S − i

2 J̃Ŝ ∧ Γ4J̃Ŝ + i
2 J̃Q ∧ Γ4J̃Q + i

2 J̃Q̂ ∧ Γ4J̃Q̂

(4.56)

is constructed in terms of the PSU(2,2|4)
SO(1,4)×SO(5) currents built from the dual coset element. Whilst, L′ and

L′′ are given by

L′ := iJ
(1)
S ∧ (N −NL2)−1N−1Γ4J̃

(1)
Q − iJ

(1)
S ∧ Γ4S(N −NL2)−1SJ̃ (1)

Q +

+ JKm ∧ J̃
(1)
Pn
ηmn(1 + 1

4Mâb̂M
âb̂)

(4.57)

and

L′′ := iJ̃
(0)
S ∧ (N −NL2)−1(4N−1Γ4S − S − L)J

(1)
S −

− iJ
(0)
Ra
∧ J̃ (0)

S (N −NL2)−1N−1Γ4(2S − Γ4NL)Γ4Γaξ−

− J̃ (0)
Km
∧ J̃ (1)

Pn
Mmn

(
1 + 1

4Mâb̂M
âb̂
)
.

(4.58)

Realising that (4.56) has the same explicit form as the initial Lagrangian (4.38), hence the Lagrangian

of the superstring on AdS5×S5 will be self-dual provided that L′+L′′ is a total derivative. This can be

demonstrated by performing some involved computations18. The results are

18See [36] for details.
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L′ = −i d
[
J

(1)
S Γ4ξ

(
1 + 1

4Mâb̂M
âb̂
)]
, (4.59)

and

L′′ = − 1
2d
[
J̃

(1)
Mmn
Mmn

(
1 + 1

4Mâb̂M
âb̂
)]
, (4.60)

where the matrices Mmn and Mâb̂ have been defined by the first equation in (4.41).

Lastly, we have showed that
∫
Lg =

∫
Lg̃ which demonstrates that AdS5 × S5 is exactly self-dual. That

is, the AdS5×S5 superstring action is self-dual under the worldsheet duality transformation on (xm, θα)

coordinates, without gauge fixing κ-symmetry.

4.5 Summary

In this chapter we have introduced the technicalities involved in working with worldsheet T-duality, which

contrasts the methods of Chapter 3, involving the supergravity. After an introduction, the ideas involving

coset σ-models were slowly introduced. After some useful examples, the general setup for the work that

follows was given. Finally, we end with the important example of the self-duality of the AdS5 × S5

background. The worldsheet T-duality transforms the superstring σ-model action, which is constructed

with the use of the supercoset representative g, into the action constructed using the supercoset element

g̃. The duality makes use of a Z4-automorphism of the psu(2, 2|4) Lie superalgebra. Whilst the worldsheet

approach is challenging as a result of the difficult mathematical tools involved, the worldsheet approach

is invaluable as it offers us insight that is missed when working in the supergravity picture. It beautifully

demonstrates the T-self-duality exactly, that is, without fixing κ-symmetry gauge.
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Chapter 5

Less Than Maximally

Supersymmetric Coset Models

5.1 Introduction

This chapter deals with the self-duality of some of the backgrounds considered in Chapter 3 ( i.e. AdSd×Sd

(d = 2, 3) and AdSd × Sd × Sd (d = 2, 3)), but it does so from the perspective of the coset geometry.

This is also known as the worldsheet perspective. When we consider the string theory, we attribute the

existence of dual superconformal symmetry to the self-duality of the chosen superstring σ-model given

certain T-duality transformations along bosonic and fermionic string modes on the worldsheet which

we associate with (anti-) commuting isometries of the AdS5 × S5 background [21, 22]. Self-duality is

the direct consequence of performing a sequence of bosonic and fermionic T-duality transformations.

Specifically, we say a background is self-dual when these transformations do not change the values of the

background fields. In particular the RR fields and the dilaton1 remain invariant. The relationship between

fermionic T-duality and dual superconformal symmetry, in the context of the AdS5 × S5 superstring

and the corresponding super Yang-Mills theory, is very well understood [21–23]. However, there are

cases involving σ-models which possess less than maximal supersymmetry. These backgrounds are also

integrable, but are less understood as compared to the maximal case. They will be the focus of this

chapter.

We concentrate on the remaining issues regarding the T-duality of superstrings on AdSd × Sd ×M10−2d

backgrounds. We would like to obtain a better understanding of these cases with the hope that it provides

insights into the still problematic AdS4 × CP 3 background. However, for some recent developments in

this regard, see [42]. The problem stems from issues which appear when performing fermionic T-duality

on the associated σ-model [124, 151] and the supergravity background itself [16, 101, 107, 151]. T-self-

duality is shown for supercoset σ-models associated with strings propagating on AdSd × Sd (d = 2, 3)

backgrounds upon imposing a partial gauge fixing of κ-symmetry of the σ-model actions by putting to

zero one quarter of the supercoset fermion modes [36]. An additional issue arises when considering the

coset supermodels on AdSd×Sd (d = 2, 3) backgrounds as a result of the fact that coset supermodels only

1See [23] for a review and references.
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describe some sectors of the full superstring theory on AdSd×Sd×M10−2d backgrounds [36]. For d = 3,

only 16 out of 32 supersymmetries in 10-dimensions are preserved by these backgrounds. For d = 2, only

8 out of 32 supersymmetries are preserved. This implies that 16 and 8 fermionic modes, respectively,

correspond to the fermionic directions of the associated coset superspace, with the remaining 16 and 24

fermionic modes corresponding to broken supersymmetries [36]. These sectors of the theory are coupled

non-trivially to the non-supercoset directions of M10−2d via these modes.

For d = 3, we may use κ-symmetry to set all of the 16 non-supercoset fermionic modes to zero. However,

this gauge fixing does not work for a large class of classical string solutions (including strings moving on

the AdS3 × S3 sub-space only [152]). Even though the AdS3 × S3 supercoset σ-model with 16 fermions

possesses κ-symmetry [36], this κ-symmetry is broken when the supercoset model is coupled to the T 4

sector (via the Virasoro constraints) of the full superstring action in AdS3 × S3 × T 4 [37]. Here, the 16

non-supercoset fermions have been κ gauge fixed to zero [36]. This means that the κ-symmetry of the

AdS3 × S3 supercoset sub-sector is part of the κ-symmetry of the complete 10-dimensional superstring

which is lost when the non-supercoset fermions have been completely gauge fixed. For the d = 2 case we

may use κ-symmetry to remove 16 of the 24 non-supercoset fermions, then at least 8 of the remaining

non-supercoset fermionic modes are always present in the AdS2 × S2 × T 6 string spectrum [37, 39].

Self-duality of the associated supercoset models have been demonstrated for partially gauge fixed κ-

symmetry. Here, we have set some of the fermionic supercoset coordinates to zero [122, 124]. However,

when supercoset models are used to describe gauge fixed sectors of the superstring σ-model where κ-

symmetry has already been used to remove part of the non-supercoset fermions, we may no longer use

κ-symmetry to demonstrate the self-duality of the corresponding supercoset sectors of AdSd×Sd×M10−2d

superstrings.

Resulting from these issues is an appreciation of the importance of proving the T-self-duality of super-

strings on AdSd × Sd ×M10−2d backgrounds without gauge fixing κ-symmetry, that is, by taking into

account the non-supercoset fermions. This is precisely what we will demonstrate in the following section.

Figure 5.1 illustrates an example of the AdS2 × S2 × T 6 case. Furthermore, we consider the excep-

tional cases, those backgrounds with two sphere subspaces. There we isolate strings movement to the

AdSd×Sd×Sd sectors and fix the non-supercoset fermions to zero. We show that these backgrounds are

self dual under combined bosonic and fermionic T-duality. This chapter is based on research presented

in [36].

5.2 Self-duality of AdS3 × S3 × T 4 Superstrings

Solutions of the type AdS3×S3×T 4 preserve 16 supersymmetries. These supersymmetries generate the

required superisometries to form the PSU(1, 1|2) × PSU(1, 1|2) supergroup (see for example [153]), a

subgroup of PSU(2, 2|4). The curvature of the AdS3 × S3 subspace is given by

Rab
AdS3

= −ea ∧ eb , Râb̂
S3

= eâ ∧ eb̂, (5.1)

where ea = ea(x) for a, b, . . . = 0, 1, 4 and eâ = eâ(y) for â, b̂, . . . = 5, 6, 7 are the vielbeins of AdS3

and S3, respectively. The radius of curvature for both manifolds have been set to one for convenience.
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Figure 5.1: The idea of self-duality we study is that a sequence of bosonic and fermionic T-
dualities returns us to the same background. This is shown here for the case in which we start
with type IIB AdS2 × S2 × T 6 supported by an F (5) Ramond-Ramond flux [36].

Backgrounds of this type may be supported by a 5-form flux given by

F5 = 1
3 (εcbae

a ∧ eb ∧ ec + εĉb̂âe
â ∧ eb̂ ∧ eĉ) ∧ (dϕ2 ∧ dϕ3 + dϕ8 ∧ dϕ9), (5.2)

where dϕa
′

(a′, b′, . . . = 2, 3, 8, 9) are the flat vielbeins along T 4. It is important to note the change in the

form of the F5-flux (5.2) as compared with its value in the AdS5 × S5 solution. This difference results in

changing the geometry of D = 10 spacetime geometry, which breaks half of the 32 supersymmetries. Only

half of the maximal supersymmetry is preserved, the fermionic modes of the string in these backgrounds

split into 16 fermions ϑ which are associated with the preserved, and because of this, the string fermionic

modes in such a background split into 16 fermions ϑ associated with the preserved symmetries and 16

fermions v associated with the broken symmetries.

Explicitly, the splitting is realized by using the additional projectors 1
2 (1± Γ2389) as follows

ϑi = 1
2 (1− Γ2389)Θi , υi = 1

2 (1 + Γ2389)Θi. (5.3)

As for the AdS5×S5 case, the fermions ϑ can be regarded as Grassmann-odd directions of the supercoset

space

PSU(1, 1|2)× PSU(1, 1|2)

SO(1, 2)× SU(2)

which contains AdS3 × S3 as the bosonic subspace. The T 4 directions and the non-supercoset fermions

υ are responsible for extending this supercoset to a full solution obeying the 10-dimensional type IIB

supergravity constraints. For certain classical string solutions in AdS3 × S3 × T 4, κ-symmetry may be

used to gauge fix to zero all the non-supercoset fermions υ. Modulo some constraints (see for example [36]),

this gauge permits fluctuations of the string along T 4 to decouple from the PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) modes
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(see [37] for details). Hence, the superstring action reduces to its supercoset part, which can be obtained

as a truncation of the AdS5 × S5 action, once we select the PSU(1, 1|2) × PSU(1, 1|2) subgroup of

PSU(2, 2|4) and reduce to it.

First, we identify the 10-dimensional indices 2, 3, 8, and 9 as associated with the T 4 directions (ϕa
′
) =

(ϕI , ϕI
′
) (I, J, . . . = 2, 3; I ′, J ′, . . . = 8, 9). This particular choice of the tangent space indices associated

with AdS3 × S3 × T 4 are related to the way we truncate the psu(2, 2|4) superalgebra to psu(1, 1|2) ⊕
psu(1, 1|2). Next, we remove from the algebra all the bosonic generators with the indices m = 2, 3 and

â = 8, 9 from the algebra, and halve the number of fermionic generators by acting on the original 32

generators defined in (4.26) with the additional projector introduced in section 4.4

Qi = 1
2Q

i(1− Γ2389) , i = 1, 2. (5.4)

The generators (Q, Q̂, S, Ŝ) defined in section 4.4 are subject to the same projection. The algebra

psu(1, 1|2) ⊕ psu(1, 1|2) may be found in [36]. From a geometrical point of view, this truncation cor-

responds to obtaining the AdS3 × S3 × T 4 background from AdS5 × S5 by formally compactifying two

directions of the 4-dimensional Minkowski boundary of AdS5 and two directions of S5 onto T 4 ∼= T 2×T 2.

Finally, one deforms the value of the F5 flux as in (5.2).

5.2.1 Self-duality of the Supercoset Model

As already mentioned, PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) can be described as a truncation of the AdS5×S5 supercoset

model. Then, it follows that we may use the results of the previous Chapter (section 4.4) to show that

AdS3 × S3 × T 4 is self-dual under the combined T-dualisation of the bosonic coordinates (along the

2-dimensional Minkowski boundary of AdS3) and four fermionic directions (associated with a commuting

subalgebra of the PSU(1, 1|2)× PSU(1, 1|2) isometries). Conveniently, the PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) super-

coset σ-model Lagrangian has the same form as (4.37) where the currents constructed with the coset

element having a form similar to (4.30). Then, if we follow the steps in section 4.3 we find that, after the

T-dualisation process, the Lagrangian turns is equal (up to a total derivative) to the AdS3×S3 σ-model

Lagrangian constructed in terms of the supercoset element

J̃ = g̃−1dg̃ , g̃ := ex̃
nKn−iθ̃Γ4SeBe−(ξQ+SαSαβξβ) , (5.5)

where Sαβ was defined in (4.34). For the case AdS3 × S3, at most ξ4 powers are present and thus, the

factor (1− 1
4Mâb̂M

âb̂)−1 appearing in the AdS5 × S5 supercoset element does not enter the expression

for g̃ here. Furthermore, we may bring the coset element g̃ in (5.5) into a form similar to that of the

original coset element (4.30). Again, this means that we arrive at an expression for g̃ with the last factor

to the right being composed of e−ξQ alone. This was achieved in the AdS5 × S5 case as well. The final

form of g̃ (after applying a chain of equalities as in [36]) is

g̃ :=ex̃
nKn−iθ̃Γ4SeB

′
e−ξQ (5.6)



CHAPTER 5. LESS THAN MAXIMALLY SUPERSYMMETRIC COSET MODELS 89

where eB
′

= eB e−
i
2DξΓ

4Sξ, x̃′n = x̃n + fn(y, θ̂, ξ̂, ξ), θ̃′α = θ̃α + fα(y, θ̂, ξ̂, ξ) and fn and fα are certain

functions of the coordinates yâ of S3, the radial direction |y| of AdS3 and the Grassmann-odd coordinates

θ̂, ξ̂, and ξ. The AdS2×S2 case follows similarly (see [36] for a detailed presentation). There we have to

consider type IIA and IIB backgrounds separately, although both backgrounds are related by a bosonic

T-duality.

5.2.2 Non-supercoset Fermions

So far we have demonstrated that, in a particular κ-symmetry gauge in which the 16 non-supercoset

fermions v are set to zero, the AdS3 × S3 × T 4 superstring action is self-dual under the combined

fermionic and bosonic T-duality. However, as mentioned before, this gauge is not always permitted. For

example, when the classical strings move entirely in the AdS3×S3 subspace. The κ-symmetry projector

(M in [152]) fixes the gauge. Meaning that it projects out all but the physical degrees of freedom.

Suppose that the κ-symmetry projector commutes with the projector which singles out the unbroken

supersymmetries (16 in this case). Then, it cannot eliminate enough non-supercoset fermions to leave us

with a physical set of modes. Some unphysical modes will always remain. Consequently, some solutions

cannot be found in some gauges and what we have discovered is that the motion of the string in the AdS3

subspace is important. It is not consistent with our gauge fixing. Thus, it is important to understand

how the T-dualisation works in different gauges or without fixing κ-symmetry.

To derive the form of the Green–Schwarz superstring Lagrangian (4.6) in the AdS3×S3×T 4 background,

we need expressions for the supervielbeins EA(X,ϑ, υ) and the NSNS 2-form B2(X,ϑ, υ) as a power series

in υi. This may be determined in the same way as the Θ-expansion derived in [154] (see for example [155]).

Then

EA = EA(X,ϑ)− iEΓAυ − i
2DυΓAυ, (5.7)

up to quadratic order in v. For the NSNS 2-form we have

B2 = Bcoset
2 (x, y, ϑ)− iEA ∧ EΓAσ

3υ − 1
2EΓAυ ∧ EΓAσ

3υ − i
2E

A ∧ DυΓAσ
3υ, (5.8)

where Eαi(x, y, ϑ) = 1
2 (1 − Γ2389)αβE

βi(x, y, ϑ), Ea(x, y, ϑ), and Eâ(x, y, ϑ) are the supervielbeins con-

structed in terms of the PSU(1,1|2)×PSU(1,1|2)
SO(1,2)×SU(2) supercoset currents while Ea

′
= dϕa

′
is the flat vielbein

along T 4. The Pauli matrix σ3
ij contracts the indices i, j = 1, 2 of the spinors. Moreover, the NSNS

gauge potential Bcoset
2 has again the form as in (4.37), and for the background under consideration the

covariant derivative D is given by

Dυ = ∇υ− i
16·5!E

AFB1···B5ΓB1···B5ΓAσ
2υ = ∇υ− i

4E
A(1− Γ2389)Γ01234ΓAσ

2υ,

where ∇ := d − 1
4ΩABΓAB and ΩAB(x, y, ϑ) is the spin connection on PSU(1,1|2)×PSU(1,1|2)

SO(1,2)×SU(2) defined in

terms of the currents as in section 4.4. Substituting the expressions (5.7) and (5.8) into the string action
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(4.6) we arrive at

L = Lcoset + 1
2∗dϕ

a′ ∧ dϕa
′
− i∗dϕa

′
∧ EΓa′υ − idϕa

′
∧ EΓa′σ

3υ − 1
2∗EΓa

′
υ ∧ EΓa′υ−

− 1
2EΓa

′
υ ∧ EΓa′σ

3υ − i
2∗E

A ∧ DυΓAυ − i
2E

A ∧ DυΓAσ
3υ,

(5.9)

where we have used the projector properties (5.3). Here, Lcoset has the same form as (2.1) in [36] (with

γ = Γ4). The Lagrangian above contains a lot of υ-dependent terms in the gauge in which the v are

non-zero. These v contribute to the T-dualisation along the supercoset directions (xm, θ).

5.3 Self-duality of AdSd × Sd × Sd × T 10−3d Superstrings

In this section we finally address the self-duality of the non-exceptional backgrounds AdSd × Sd × Sd ×
T 10−3d (d = 2, 3) by extending the discussion in section 4.4 as well as the previous section. These

backgrounds preserve 1/4 and 1/2 of the 10-dimensional supersymmetry and can be supported by either

NSNS or RR fluxes [130, 131, 156–158]. In what follows we shall consider these backgrounds to be

supported by the following 3-flux

F3 = 1
3 (εcbae

a ∧ eb ∧ ec +
RAdS
R+

εĉb̂âe
â ∧ eb̂ ∧ eĉ +

RAdS
R−

εc′b′a′e
a′ ∧ eb

′
∧ ec

′
), (5.10)

where â and a′ are, respectively the tangent space indices of the two three-spheres and R± are their

radii. T-dualising the latter background along the S1 (a bosonic direction), one gets the type IIA

AdS3 × S3 × S3 × S1 with the 4-flux

F4 = dϕ9 ∧ ( 1
3 (εcbae

a ∧ eb ∧ ec +
RAdS
R+

εĉb̂âe
â ∧ eb̂ ∧ eĉ +

RAdS
R−

εc′b′a′e
a′ ∧ eb

′
∧ ec

′
)). (5.11)

We will show that the AdSd × Sd × Sd sectors described by supercoset σ-models are T-self-dual under

combined bosonic and fermionic T-dualities, provided that T-dualisation involves one of the spheres Sd.

The isometries are governed by the exceptional Lie supergroups D(2, 1;α) (for d = 2) and D(2, 1;α) ×
D(2, 1;α) (for d = 3). In general, the corresponding calculations are complex and challenging, as a result

we will not present details here. To make computations simpler, we set the non-supersymmetric fermionic

modes of the string to zero (υ = 0). For the d = 3 case we use κ-symmetry to do this, whilst setting them

to zero by hand for the d = 2 case. Then the T 10−3d sector decouples (modulo the Virasoro constraints)

leaving the AdSd × Sd × Sd sector free to be concentrated on.

5.3.1 The Self-duality of AdS2 × S2 × S2

Supercoset Structure

The σ-model on AdS2 × S2 × S2 is based on the supercoset
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D(2, 1;α)

SO(1, 1)× SO(2)× SO(2)
. (5.12)

Before constructing the action to analyse its T-duality properties, let us discuss the Lie superalgebra

d(2, 1;α) of D(2, 1;α) first. For general properties of the exceptional Lie superalgebra d(2, 1;α) see for

example [148, 159]. For the 10-dimensional supergravity solutions under consideration, the values of

the parameter α are restricted to the interval [0, 1]. They determine the relation between the radii of

AdS2 × S2
+ × S2

−,

α =
R2
AdS

R2
−

and 1− α =
R2
AdS

R+
. (5.13)

To avoid confusion regarding the parameter α and the spinor index α, in what follows we will set α :=

cos2(τ) := c2 and 1− α := sin2(τ) := s2, respectively.

Lie Superalgebra d(2, 1; c2)

The maximal Grassmann-even subalgebra of the Lie superalgebra d(2, 1; c2) is sl(2,R) ⊕ su(2) ⊕ su(2),

and we set sl(2,R) := 〈P,K,D〉, su(2) := 〈La〉, and su(2) := 〈Rαβ〉, respectively, for a, b, . . . = 1, 2, 3 and

α, β, . . . = 1, 2. The corresponding commutation relations are

= P , [D,K] = −K , [P,K] = 2D ,

[L+, L−] = −2iL3 , [L3, L±] = ±iL± , L± := iL1 ± L2 ,

[Rαβ , R
γ
δ] = i(δγβR

α
δ − δαδRγβ) .

(5.14)

Furthermore, d(2, 1; c2) contains eight fermionic generators which we denote by Qα, Q̂α, Sα, and Ŝα,

respectively. Letting σ1,2,3
αβ be the Pauli matrices2, the remaining non-vanishing (anti-)commutation

relations of d(2, 1; c2) are given by

{Qα, Q̂β} = −σ2
αβP , {Sα, Ŝβ} = −σ2

αβK ,

{Qα, Ŝβ} = −c2σ2
αβL+ , {Q̂α, Sβ} = c2σ2

αβL− ,

{Qα, Sβ} = −σ2
αβ(D + ic2L3)− is2σ2

αγR
γ
β ,

{Q̂α, Ŝβ} = σ2
αβ(D − ic2L3) + is2σ2

αγR
γ
β ,

[P, Sα] = −Q̂α , [P, Ŝα] = −Qα , [K,Qα] = −Ŝα , [K, Q̂α] = −Sα ,

[D,Qα] = 1
2Qα , [D, Q̂α] = 1

2 Q̂α , [D,Sα] = − 1
2Sα , [D, Ŝα] = − 1

2 Ŝα ,

[L3, Qα] = i
2Qα , [L3, Q̂α] = − i

2 Q̂α , [L3, Sα] = − i
2Sα , [L3, Ŝα] = i

2 Ŝα ,

[L+, Sα] = Ŝα , [L−, Ŝα] = −Sα , [L−, Qα] = Q̂α , [L+, Q̂α] = −Qα ,

[Rαβ , Tγ ] = −i(δαγTβ − 1
2δ
α
βTγ) , for Tα ∈ {Qα, Q̂α, Sα, Ŝα} .

(5.15)

2We lower and raise Greek indices using εαβ = iσ2
αβ and εαβ = iσ2αβ with εαγεγβ = δαβ , so that for example

σ1α
β := iσ2αγσ1

γβ = −iσ1αγσ2
γβ .
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The bosonic generators P , K, D, and La are skew-Hermitian while (R1
1)† = R2

2 and (R1
2)† = −R2

1.

The following reality conditions hold for the fermionic generators: Q†1 = Q̂2, Q†2 = −Q̂1 and S†1 = −Ŝ2,

S†2 = Ŝ1. The superalgebra (5.14) and (5.15) are invariant under these reality conditions. When c2 → 0

we recover the superalgebra psu(1, 1|2) associated with AdS2×S2×T 6 since in that limit the generators

L± and L3 decouple. This is to be expected since in the limit α → 0 (which is c2 → 0) we recover the

non-exceptional background from its exceptional counterpart. Additionally, non-vanishing components

of the invariant form of d(2, 1; c2) which are compatible with the above choice of basis are

Str(PK) = 2 , Str(DD) = 1 ,

Str(L+L−) = − 2
c2 , Str(L3L3) = 1

c2 ,

Str(RαβR
γ
δ) = 2

s2

(
δαδδ

γ
β − 1

2δ
α
βδ
γ
δ

)
,

Str(QαSβ) = −2σ2
αβ , Str(Q̂αŜβ) = 2σ2

αβ .

(5.16)

Z4-grading and order-4 Automorphism

To formulate the supercoset action based on (5.12), we need to fix a Z4-grading of the superalgebra

d(2, 1; c2)⊗ C ∼=
⊕3

m=0 g(m). Our decomposition is as follows

g(0) :=
〈
P +K,L+ + L−, σ

1
γ[αR

γ
β]

〉
,

g(1) :=
〈
Qα − σ1 β

αSβ , Q̂α − σ1 β
αŜβ

〉
,

g(2) :=
〈
P −K,D,L+ − L−, L3, σ

1
γ(αR

γ
β)

〉
,

g(3) :=
〈
Qα + σ1 β

αSβ , Q̂α + σ1 β
αŜβ

〉
,

(5.17)

where brackets (respectively, parentheses) indicate normalised anti-symmetrisation (respectively, sym-

metrisation) of the enclosed indices. Note that g(0)
∼= so(1, 1) ⊕ so(2) ⊕ so(2) as required. The order-4

automorphism Ω : d(2, 1; c2)→ d(2, 1; c2) associated with this Z4-grading is given by

Ω(P ) = K , Ω(K) = P , Ω(D) = −D ,

Ω(L3) = −L3 , Ω(L±) = L∓ , Ω(Rαβ) = σ1αγσ1
βδR

δ
γ ,

Ω(Qα) = −iσ1 β
αSβ , Ω(Q̂α) = −iσ1 β

αŜβ ,

Ω(Sα) = −iσ1 β
αQβ , Ω(Ŝα) = −iσ1 β

αQ̂β .

Furthermore,

Str
[
(P ±K)(P ±K)

]
= ±4 , Str(DD) = 1 ,

Str
[
(L+ ± L−)(L+ ± L−)

]
= ∓ 4

c2 , Str(L3L3) = 1
c2 ,

Str
[
(σ1
µ[αR

µ
β])(σ

1
ν[γR

ν
δ])
]

= − 1
s2σ

2
αβσ

2
γδ ,

Str
[
(σ1
µ(αR

µ
β))(σ

1
ν(γR

ν
δ))
]

= − 1
s2 (σ1

αβσ
1
γδ − σ1

αγσ
1
βδ − σ1

αδσ
1
γβ) ,

Str
[
(Qα ± σ1 γ

αSγ)(Qβ ∓ σ1 δ
βSδ)

]
= ∓4iσ1

αβ ,

Str
[
(Q̂α ± σ1 γ

αŜγ)(Q̂β ∓ σ1 δ
βŜδ)

]
= ±4iσ1

αβ

(5.18)
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which follow from (5.16).

Coset Representative and Associated Current

As always, the next step involves choosing a coset representative for the supercoset space (5.12) based

on the superalgebra and Z-grading. From (5.14) we can see that the generators P , Qα, and L+ are in

involution and therefore form an Abelian subalgebra3. Consequently, the associated directions are those

along which we will perform T-dualisation. Following our general discussion in section 4.3, an appropriate

form of the coset representative is4

g := exP+θαQα+λ+L+ eB eξ
αSα ,

eB := eθ̂
αQ̂α+ξ̂αŜα |y|D e−λ3L3 e−ρ

β
αR

α
β .

(5.19)

where we assume that both λ+ and λ3 are complex5. We are therefore essentially dealing with the

complexification SL(2,C)/C∗ of the coset SO(3)/SO(2) ∼= SU(2)/U(1) ∼= S2. From the perspective of

fermionic T-duality, such a complexification is rather natural (see [22] for a similar case in AdS5 × S5).

Note that the resulting line element (as seen in Chapter 3) on SL(2,C)/C∗ is

ds2 = 1
4c2

[
(dλ3)2 + e2iλ3(dλ+)2

]
. (5.20)

Upon performing the change of coordinates (λ+, λ3) 7→ (ϕ, ϑ),

λ+ =
2 tan(ϑ2 ) sin(ϕ)

1 + 2i tan(ϑ2 ) cos(ϕ)− tan2(ϑ2 )
,

e−iλ3 =
1 + tan2(ϑ2 )

1 + 2i tan(ϑ2 ) cos(ϕ)− tan2(ϑ2 )

(5.21)

for ϕ, ϑ ∈ C, we find the line element

(ds)2 = 1
4c2

[
(dϑ)2 + sin2(ϑ) (dϕ)2

]
, (5.22)

which, when considering the real slice ϕ∗ = ϕ and ϑ∗ = ϑ, becomes the standard line element on the

two-sphere S2. The Maurer–Cartan form J = g−1dg corresponding to the coset representative (5.19) is

of the form

3The maximal Abelian subalgebra for d(2, 1; c2) has two bosonic and two fermionic generators.
4To arrive at the coset representative for AdS2 × S2 × T 2 from the representative (5.19) in the limit c → 0,

one first needs to re-scale the coordinates λ+ → cλ+, λ3 → cλ3, and ραβ → sραβ first. Then, we perform c→ 0.

Upon taking this limit, the second sphere S2, whose metric becomes flat, decouples from the AdS2×S2 supercoset
and re-compactifies into T 2 which is part of the larger T 6.

5This technical assumption is used to help ease the T-duality transformations considered herein.
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J = e−ξ
αSαJ (0)eξ

αSα + dξαSα

= J (0) − ξα
[
Sα, J

(0)
]

+ i
4ξ

2σ2αβ
{
Sα,

[
Sβ , J

(0)
]}

+ dξαSα ,
(5.23)

where, as before, J (0) does not depend on the fermionic coordinate ξα, and we have set ξ2 := iσ2
αβξ

αξβ .

The explicit form of the components of the current J are given in Appendix B. Using the Z4-grading

(5.17), the coset current J decomposes according to J = J(0) + J(1) + J(2) + J(3) with

J(0) = 1
2 (JP + JK)(P +K) + 1

2 (JL+
+ JL−)(L+ + L−)− JRαβσ1αγσ1

δ[γR
δ
β] ,

J(1) = 1
2 (JQα − σ1α

βJSβ )(Qα − σ1 β
αSβ) 1

2 (JQ̂α − σ
1α

βJŜβ )(Q̂α − σ1 β
αŜβ) ,

J(2) = 1
2 (JP − JK)(P −K) + JDD + 1

2 (JL+
− JL−)(L+ − L−) + JL3

L3−

− JRαβσ1αγσ1
δ(γR

δ
β) ,

J(3) = 1
2 (JQα + σ1α

βJSβ )(Qα + σ1 β
αSβ) + 1

2 (JQ̂α + σ1α
βJŜβ )(Q̂α + σ1 β

αŜβ) .

(5.24)

Supercoset Action

Using the Z4-grading (5.17) together with the currents (5.24) and the invariant form (5.16), the σ-model

action becomes

S = −T2
∫

Σ

{
− ∗(JP − JK) ∧ (JP − JK) + ∗JD ∧ JD +

+ 1
c2 ∗ (JL+

− JL−) ∧ (JL+
− JL−) + 1

c2 ∗JL3
∧ JL3

+

+ 1
s2 (∗JRαβ ∧ JRβα − σ

1αγσ1
βδ∗JRαβ ∧ JRγδ)−

− iσ1
αβ

(
JQα ∧ JQβ + JSα ∧ JSβ − JQ̂α ∧ JQ̂β − JŜα ∧ JŜβ

)}
.

(5.25)

For the ‘non-exceptional’ cases, the matrix (−σ1) can be identified with the matrix Γ4P along the AdS2

radial direction with P being the projector which singles out eight unbroken supersymmetries of the

background under consideration. The same is true for the exceptional cases.

T-dualisation

We are now ready to perform the T-duality on the action (5.25) according to the procedure laid out in

section 4.3. After some technical algebra, a field re-definition and the use of the Maurer-Cartan equations

we find that the resulting dual action has the same form as the initial action, but with currents constructed

with the different coset element

g̃ := ex̃K−iσ2αβ θ̃αSβ+λ̃+L− eB eσ
1β
αξ
αQβ , (5.26)

where, eB is the same as in (5.19). Therefore, the supercoset sigma model on AdS2×S2×S2 is self-dual
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under the combined T-dualities along x, θα, and λ+. As a check, in the limit c2 → 0, upon an appropriate

re-scaling of the JL-currents, the action reduces to the PSU(1,1|2)
SO(1,1)×U(1) supercoset σ-model for AdS2 × S2.

In this limit, the dualised sphere S2 gets ‘decompactified’ into a T 2 torus which completely decouples

from the AdS2 × S2 and fermionic sector.

5.3.2 Self-duality for AdS3 × S3 × S3

Considering the subsector of the AdS3 × S3 × S3 × S1 theory in which the string moves only in AdS3 ×
S3 × S3 while its non-supersymmetric fermionic modes are gauge fixed to zero and the S1-fluctuations

decouple from the rest. For this case, the T-dualisation process is almost identical to the discussion above

for the AdS2 × S2 × S2 case, however, the explicit calculations are technically more involved. Therefore,

we only outline the basic steps here.

The supercoset sigma model on AdS3 × S3 × S3 is based on the supercoset

D(2, 1; c2)×D(2, 1; c2)

SO(1, 2)× SO(3)× SO(3)
. (5.27)

The Lie superalgebra d(2, 1; c2) ⊕ d(2, 1; c2) has {Pm, D,Km, L
±
a , R

± i
j} for m = 0, 1, a = 1, 2, 3, and

i, j = 1, 2 as its bosonic generators and {Qiα, Siα, Q̂iα, Ŝiα} for α = 1, 2 as its fermionic generators,

respectively. Here, the L±a and R± ij are the generators of so(3) ⊕ so(3) ⊕ so(3) ⊕ so(3). Furthermore,

the generators {Pm, Qiα, L± := iL±1 + L±2 } are in involution6 so that the coset representative will have

the left factor of the form ex
mPm+θiαQiα+λ+L

++λ−L
−

. The coordinates xm parametrize the 2-dimensional

Minkowski boundary of AdS3. As for the AdS2 × S2 × S2 case, we shall work with the complexification

SO(4,C)/SO(3,C) of SO(4)/SO(3) ∼= [SU(2) × SU(2)]/SU(2) ∼= SU(2) ∼= S3. Thus, the coordinates

λ± are assumed to be complex. The resulting line element on SO(4,C)/SO(3,C) will be of the form

ds2 = 1
4c2

[
(dλ3)2 + e2iλ3(dλ+)2 + e2iλ3(dλ−)2

]
. (5.28)

The next step is to choose an appropriate Z4-grading for the space (5.27). The T-duality is then performed

along the bosonic directions xm and λ± and the fermionic directions θiα. The T-self-duality of the

supercoset σ-model follows. We have explicitly checked this up to the second order in the four-component

fermions ξiα, like in the AdS2 × S2 × S2 case. We believe that the invariance holds to the highest (4th-

order) in ξiα. This is supported by the fact that at α = 0, the model reduces to the AdS3×S3 supercoset

sigma model times the torus sector, which have shown to be duality invariant.

6Note that the maximal Abelian subalgebra of d(2, 1; c2) ⊕ d(2, 1; c2) has four bosonic and four fermionic
generators.
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5.4 Combined bosonic-fermionic T-duality of the Ramond-Ramond

AdSd × Sd ×M 10−2d backgrounds

This section provides additional evidence for the T-self-duality of the complete AdS3 × S3 × S3 × S1

theory by proving invariance under the combined bosonic and fermionic T-duality of its supergravity

background. We shall apply the T-duality rules directly to the corresponding supergravity component

fields. We are therefore extending the earlier results of [16, 22, 23, 101, 107] to the whole class of the

Ramond-Ramond AdSd × Sd ×M10−2d super-backgrounds. This general approach deals with all the

backgrounds considered in this thesis at once.

5.4.1 Rules for Fermionic T-duality

Killing Spinors

Following the procedure laid out in Chapter 1 which was based on the conventional rules [12,13, 129]

(and [66] for a generalization to the whole superspace), we may T-dualise the bosonic directions. After

this procedure was generalized for fermionic directions in [22], we found out that we could T-dualise

along Grassman-even Killing spinors, denoted by Ξµ(X), which generate Abelian super-isometries. Here

µ labels the number of the Killing spinor. Recall that fermionic T-duality acts on the dilaton Φ(X) and

the RR fields, but leaves the metric and the NSNS 2-form invariant. That we dualise along Grassman-even

directions implies the following condition

ΞµΓAΞν = 0 for all A,µ, ν with A = 0, 1, . . . , 9. (5.29)

This condition has non-trivial solutions if the Killing spinors are complex, thus manifesting the fact that

they are associated with complex Grassmann-odd directions in superspace. The Killing spinor conditions

themselves have the following form

∂MΞ− 1
4ΩABM (X)ΓABΞ = − 1

8
/FEAM (X)ΓAΞ ,

1
16ΓA /FΓAΞ = 0

(5.30)

where ΩABM (X) and EAM (X) are the spin connection and the bosonic vielbeins of the 10-dimensional

background respectively, and /F denotes the contribution of the RR fluxes

/F =

eΦ
(

1
2F

(2)
ABΓABΓ11 + 1

4!F
(4)
ABCDΓABCD

)
type IIA

− eΦ

2 (1 + Γ11)
(
iF

(1)
A ΓAσ2 + 1

3!F
(3)
ABCΓABCσ1 + i

2·5!F
(5)
A···EΓA···Eσ2

)
type IIB

(5.31)

We arrive at (5.30) by requiring that the supersymmetry variations for the dilatino and gravitino vanish.

They are also determined by the individual geometry and its accompanying RR fluxes. Requiring that

the first equation in (5.30) be integrable determines the projector P8(d−1). This singles out 8(d − 1)
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fermionic isometries for the background considered. The second equation in (5.30) is then identically

satisfied.

Fermionic T-duality Rules

Upon solving for the Killing spinor equations (5.30), one can derive from7

∂MCµν =

EAM Ξ̄µΓAΓ11Ξν type IIA

EAM Ξ̄µΓAσ
3Ξν type IIB

(5.32)

the matrix C = (Cµν(X)) which is formed by the components of the NSNS 2-form B2 along the Abelian

fermionic isometries, that is,

dθµ ∧ dθνBµν(X,Θ)|Θ=0 := dθµ ∧ dθνCµν(X). (5.33)

Once the matrix Cµν is known, one obtains a shift of the dilaton under fermionic T-duality

∆Φ = Φ′ − Φ = 1
2 log(det C) (5.34)

and of the RR fields, which in our conventions is

∆F = /F
′ − /F = 8Ξµ(C−1)µνΞνΓ, (5.35)

where Γ is a certain product of Γ-matrices that is used to split the fermionic E(1,2) currents into four pieces

corresponding to the splitting up of the superalgebra generators Q into Q, Q̂, S, and Ŝ, respectively. In

particular, backgrounds with a 5-flux alone, have Γ = 1. For AdSd × Sd ×M10−2d (with d = 2, 3) with

3-flux, we have Γ = −Γ23. For backgrounds with both 2- and 4-fluxes, we have Γ = Γ11Γ123, while for

backgrounds with 4-flux only, we have Γ = Γ1.

Explicit Form of the Killing Spinors

A direct way to get the explicit form of the Killing spinors is to read them off from the corresponding

components of the fermionic currents JQ associated with the generators Q of the superisometry algebra.

By construction, the Killing spinors satisfy the defining relations (5.29) and (5.30) and are the components

of Jα
β(|y|, yâ, λ3) in

7Equations (5.32) determine the components HM of the field strength H3 = dB2 of the NSNS 2-form for the
super-backgrounds under consideration.
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JQα |Θ=0 = dθµJµ
α(|y|, y, λ3) = dθµe−BQµeB |Qα,θ̂=ξ̂=0

!
= dθµΞµ

α, (5.36)

where eB was defined in the last section . The Killing spinor condition, a particular form of (5.30), is

obtained by differentiation of (5.36)

dΞµ +
[
e−BdeB ,Ξµ

]
|Θ=0 = 0 ,

e−BdeB |Θ=0 = Ωâb̂(y/|y|)Râb̂ + JD(|y|)D + JL3
(λ3)L3 .

(5.37)

Note that the index µ should be regarded as an external one, labelling the number of each Killing spinor.

Considering the structure of the coset element eB(|y|,y,λ3) and the commutation relations [D,Q] = 1
2Q,

[Râ, Q] = − s
2

2 QΓâΓ4P, and [L3, Q] = i
2Q, we have the following generic form of the Killing spinors in

question8

Ξµ
α = Jµ

α(|y|, y, λ3) = |y|− 1
2 e

i
2 cλ3Oµα(yâ/|y|), (5.38)

where Oµα(yâ/|y|) := (esPΓâΓ4 y
â/(2|y|))µ

α is a Spin(d+ 1)-matrix associated with the coset Sd ∼= SO(d+

1)/SO(d) and P := P+P8(d−1) is the projector matrix which singles out the 2(d − 1) anti-commuting

isometries Q = QP for each case of AdSd × Sd ×M10−2d, as was described in the previous sections. By

definition, we have

OTΓ4O = Γ4P, (5.39)

The structure of the matrix Cµν , see (5.33), is read off from the form of the Wess-Zumino term of the

Green-Schwarz superstring action, which in our conventions has the form

Bµν |Θ=0 = iJµ
γΓ4

γδJν
δ(|y|, y, λ3)

!
= Cµν . (5.40)

Using (5.38) and (5.39), we find that

Cµν = i|y|−1eicλ3(Γ4P)µν (5.41)

and its inverse is

C−1µν = −i|y|e−icλ3(PΓ4)µν . (5.42)

From (5.41) we can read off the shift (5.34) of the dilaton

8To have a smooth limit from AdSd × Sd × Sd × T 10−3d to AdSd × Sd × T 10−2d at c→ 0, we had rescale the
coordinates λ± and λ3 of the second sphere.
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∆Φ = 1
2 log(det C) = −(d− 1) log |y|+ i(d− 1)cλ3 (5.43)

and from (5.42) we read off the change (5.35) in the RR fluxes upon the fermionic T-duality for all the

considered cases

∆F = 8JµC−1µνJνΓ = −8iPΓ4Γ = −(1 + iΓ0123) /F . (5.44)

Explicit Form of the Ramond-Ramond Fluxes

In the interest of completeness, let us present more details on the form of the RR fluxes characterized by

(5.44) in some of the exceptional AdSd × Sd × Sd × T 10−3d cases:

(a) AdS3 × S3 × S3 × S1: Consider type IIB theory with a 3-flux as in [127], for example

/F 3 = 2
(
Γ014 +

√
αΓ823 +

√
1− αΓ567

)
= 4P16Γ014 . (5.45)

In this case, Γ = −Γ23 as in the corresponding non-exceptional α = 0 case. Alternatively, we may

T-dualise this background along the S1-coordinate ϕ9 to get the IIA background with 4-flux only,

as written in [121], and use the same P16 with Γ = Γ239.

(b) AdS2×S2×S2×T 4: Consider type IIA theory with a 4-flux, then we may write the corresponding

projector of rank 8 as a product of two rank 16 projectors, P8 = P1P2, as in [121]. Re-numbering

the 4-flux components of [121] such that 0, . . . , 3 are the directions along which we dualise (with

2, 3, 8, 9 the T 4 directions, one sphere being parametrised by x7 = λ3 and x1 = λ+, and the other

sphere directions labelled by 5, 6) this reads

/F 4 = 4P1P2Γ04 92 ,

P1 := 1
2 (1 + Γ9238) , P2 := 1

2 (1 +
√
αΓ04 71 23 +

√
1− αΓ04 56 98)

(5.46)

with Γ = Γ239.

In all the cases under consideration, the shifts (5.43) and (5.44) are undone by the corresponding bosonic

T-dualities, as we shall show next for the AdSd × Sd ×M10−2d backgrounds.

5.4.2 Compensating Bosonic T-duality

General Case

The complete Buscher rules for bosonic T-duality are part of the O(D,D) symmetry of generalised

geometry [133]. However, in the cases of interest to us here, the antisymmetric NSNS B-field vanishes

and the metric is diagonal, simplifying the rules greatly. Let I be the set of directions along which we

dualise, then the new metric has the components
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G′tt =
1

Gtt
, t ∈ I

and remains unchanged in all other directions. The shift in the dilaton is given by (minus half of the)

log of the determinant of this block, that is

∆Φ = − 1
2 log detGMN = − 1

2

∑
t∈I

logGtt. (5.47)

Allowing for a some abuse in notation that t refers to flat directions here, we can write the change in the

RR forms as

/F
′′

=

(∏
t∈I

ct Γt

)
/F
′
, ct :=

−i for t = 0

1 else,
(5.48)

where /F
′

is the result of the fermionic T-duality (see (5.35) ). The change in the RR fluxes has been

written in terms of potentials in [81]. Here, it is important to include factors eΦ as the dilaton is non-

trivial. For non-vanishing dilaton and a general metric (i.e. not diagonal), [52] write the changes in the

RR fluxes in terms of the field strengths. Time-like T-duality results in imaginary forms [83]. The overall

sign is not physical, but depends on the order in which we perform the T-dualities. Let us apply this

to the backgrounds of interest to us. T-duality was performed along directions labelled by t ∈ 0, ..., 3.

Then, the T-dualised RR fluxes (5.48) take the form

/F
′′

= −iΓ0123 /F
′
.

Substituting into the above equation /F
′

= /F + ∆F with the shift ∆F produced by the fermionic T-

duality as in (5.44), we see that the combined bosonic-fermionc T-duality leaves the RR fluxes invariant,

for example /F
′′

= /F .

The AdSd Metric

Consider the T-dualisation of the background metric and the dilaton. With our choice of the coset

element and corresponding AdSd × Sd metric, the effect of applying T-duality along all d− 1 boundary

directions of AdSd on the line element on AdSd is

ds2 =
−(dx0)2 +

∑d−2
i=1 dxidxi +

∑d+1
r=1 dyrdyr

|y|2

→ |y|2
[
− (dx0)2 +

∑d−2
i=1 dxidxi

]
+

∑d+1
r=1 dyrdyr

|y|2

and the dilaton shift is
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∆AdSΦ = (d− 1) log |y|.

We can return the metric to its original form by defining y′r = yr/|y| which sends

|y| =
√∑d+1

r=1 y
ryr → 1

|y| . Dualising along some torus directions has no effect on the metric or the

dilaton.

The Sd Metric

In the exceptional cases AdSd × Sd × Sd × T 10−3d we also dualise along some directions of one of the

spheres: λ+ for d = 2, and λ± for d = 3. The effect on the line element on Sd, after the usual rescaling,

ds2 = 1
4

[
(dλ3)2 + e2icλ3(dλ+)2 + e2icλ3(dλ−)2︸ ︷︷ ︸

only for d= 3

]
→ 1

4

[
(dλ3)2 + e−2icλ3(dλ+)2 + e−2icλ3(dλ−)2︸ ︷︷ ︸

only for d= 3

]

and we recover the original metric by defining λ′3 = −λ3. The effect on the dilaton is

∆SΦ = −i(d− 1)cλ3 + (d− 1) log 2. (5.49)

Finally, ∆AdSΦ+∆SΦ cancels the fermionic dualitys shift in the dilaton, (5.43) (modulo the constant term

which can be ignored). Since the only contribution from the dilaton is as an overall factor multiplying the

action in the path integral, it will not affect the classical supergravity argument. In summary, we have

shown that the AdSd × Sd ×M10−2d backgrounds with (d = 2, 3, 5) are invariant under the combined

fermionic-bosonic T-duality.

5.5 Summary

This chapter dealt with the less than maximally supersymmetric backgrounds in the same way that

AdS5 × S5 was treated at the end of Chapter 4. Our goal was to establish T-self-duality for such

backgrounds with and without κ-symmetry gauge fixing. To this end, we were successful. We showed

that the background AdS3 × S3 × T 4 was self-dual without fixing κ-symmetry gauge up to second order

in ξ, and argued the same was true up to highest (4th order) in ξ. Furthermore, we showed that the

exceptional backgrounds AdSd × Sd × Sd ×M10−3d (for d = 2, 3) were self-dual in a gauge in which the

non-supercoset fermions were fixed to zero, either by hand or using κ-symmetry.
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Part IV

Summary and Conclusion
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Conclusion

An integrable system is one which is exactly solvable, that is, we can obtain explicit solutions. In

the context of string theory and field theory, there are an finite number of conserved charges. Here,

integrability implies that there is an associated infinite dimensional algebra. Consider AdS5 × S5 which

is integrable and dual to N = 4 super Yang-Mills. The presence of integrability makes it reasonable to

expect that a complete solution for the spectrum of planar scattering amplitudes of AdS5 × S5 may be

obtained [21]. Similarly, this is the case for N = 4 super Yang-Mills and its spectrum of dimensions of

the gauge invariant generators. Moreover, integrability is expected to be connected with self-duality in

the some way. This is not yet well understood [22]. Simply put, integrability places tight constraints on

a theory. We would like to see the conserved charges put to use to completely fix all amplitudes. In [26],

T-self-duality was used for the AdS5 case to construct classical solutions for open strings which were

related to strong coupling limits of gluon scattering amplitudes [21].

Duality is a desirable property, however, it is difficult to show in general. This is where integrability

supplements duality. Integrability, as mentioned already, imposes constraints on the theory. Therefore,

more integrability will impose more constraints. These constraints will be seen on both sides of the

duality. This is also difficult to show. T-duality has the advantage of being algorithmic. This means that

it is much easier to implement. In this thesis we have tried to connect the triangle:

Figure 5.2: Triangle of the relationships between various concepts that we have studied.

The central conjecture made in this thesis may be given by the following statement: T-self-duality ⇐⇒
integrability. This ‘if and only if’ statement was hinted at in [22], but, is this conjecture true for every

10-dimensional AdS-superstring background? Also, in [22], self-duality is proven to all orders in α′ for

the integrable background AdS5×S5. The proof was elegant, and AdS5×S5 acts as the ideal laboratory.

However, our tests work out too well in this laboratory. With tests of generality looming regarding

our proposed conjecture, we face the question: Will our conjecture work for backgrounds with less than
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maximal supersymmetry? We needed to determine whether AdS5×S5 was a unique case. Thus, we need

to break supersymmetry, systematically. Before moving on, we note that the proof of self-duality in [22]

was completed using a partially fixed κ-symmetry gauge. In this thesis, based on the work in [36], we

prove that AdS5 × S5 is exactly self-dual without fixing κ-symmetry at all.

Breaking a little supersymmetry to start, the next to maximally supersymmetric background we arrive

at is AdS4 × CP 3. As is the case for the maximally supersymmetric AdS5 × S5 case, AdS4 × CP 3 is

integrable in the planar limit [42]. Furthermore, there is a lot of evidence available which favours the

presence of dual superconformal symmetry. Thus, it seems likely that the background would be a good

candidate for our conjecture. However, the results are disappointing in this regard. AdS4 × CP 3 is not

self-dual under a combined set of bosonic and fermionic T-duality. We can say that the background is

self-dual classically, but at the quantum level we are at a loss. This means that we cannot use the classical

self-duality of AdS4 ×CP 3 to account for the dual superconformal symmetry of ABJM [42]. This brings

us to a key question and its associated conjecture: “Why is AdS4×CP 3 not self-dual, despite AdS5×S5

being self-dual?” It is odd that, for some reason, AdS4×CP 3 fails the conjecture despite its many other

similarities to AdS5 × S5 . Now we have the following logic.

The maximal case has the property that it is self-dual and integrable. However, when considering a

background with less supersymmetry like AdS4 × CP 3 , we find that it is not self-dual. We wanted to

test whether the absence of self-duality was as a result of AdS4 × CP 3 possessing less than maximal

supersymmetry. The work covered in Chapters 3-5 addressed this question. We considered two classes of

backgrounds: AdSd×Sd×T 10−2d (d = 2, 3) andAdSd×Sd×Sd×T 10−3d (d = 2, 3). Both backgrounds have

less supersymmetry than AdS4 × CP 3 and we proved that they were all self-dual from the supergravity

and worldsheet perspectives. Therefore, our claim that AdSd×Sd×T 10−2d (d = 2, 3) does not work due

to less supersymmetry was incorrect. Some other mechanism, which we do not yet understand, is at play.

Recently, Ó Colgain and Pittelli released a fascinating paper [42] dealing with issues surrounding the

self-duality of AdS4 × CP 3. Interestingly, they showed that AdS4 × CP 3 could not be self-dual using

either the supergravity or worldsheet approach. Irrespective of the chosen isometries, one encounters a

singularity in the dilaton shift. This results because the generators of the Lie algebra do not admit a

non-singular order-4 automorphism [42,45,47]. One might then decide to deform the background in such

a way that the supersymmetry is preserved, resulting in a new background in the process. This is done via

a TsT transformation which involves a Tduality, then a shift (or translation), then a further T-duality.

However, as stated in [42], TsT transformations commute with fermionic T-duality. This means that

even though we change the background through deformation and without breaking supersymmetry, the

conclusion above still holds. This background is not self-dual.

These results preclude the AdS4 × CP 3 geometry from being self-dual based on fermionic T-duality.

However, a puzzling aspect remains despite this new knowledge. There is still a lot of evidence suggesting

that there should be a self-duality transformation at work, based on perturbative observations linked

to integrability. Thus, what we learn from this is that the T-duality transformations in [22] are not

responsible for the self-duality of supercosets represented by quotient groups or the TsT deformations of

their AdS5 × S5 case. This, despite AdS5 × S5 being integrable. Currently, an explanation eludes us.

Moving forward, there remain a number of outstanding questions. What is responsible for the correct

self-duality, i.e. what transformations do we require given the supposition that some sort of self-duality is

at play? Do we need to use complexified CP 3 coordinates? What happens when we consider non-trivial
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NSNS 2-forms? Evidently, even after nearly three decades of intense scrutiny, the idea of T-duality in

string remains as fruitful an area of research as ever. We look forward to exploring these and more ideas

further.
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Appendices
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Appendix A

Conventions

A.1 Pauli Matrices

The Pauli matrices are defined as

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
,

with the following algebra

σiσj = δij1 + 2εijkσk,

and the SU(2) generators are given by

ti =
1√
2
σi,

such that

Tr(titj) = δij , [ti, tj ] = if ijk t
k = i

√
2εijk t

k.

A.2 Gamma Matrices

We follow the conventions laid out in [16, 82]. Namely, we work with the 32 × 32 dimensional gamma

matrices which represent R1,9 with a mostly plus metric signature, (−+ ...+). The Levi-Civita tensor is
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defined with ε0...9 = 1. The gamma matrices have the following structure

Γ0 = iσ2 ⊗ 116 =

[
0 1

−1 0

]
, Γm = σ1 ⊗ γm =

[
0 (γm)αβ

(γm)αβ 0

]

with (Γ0)2 = −1 and (Γm)2 = 1. The 16× 16 γ matrices are as follows

γ1 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2

γ2 = σ2 ⊗ 1⊗ σ1 ⊗ σ2

γ3 = σ2 ⊗ 1⊗ σ3 ⊗ σ2

γ4 = σ2 ⊗ σ1 ⊗ σ2 ⊗ 1

γ5 = σ2 ⊗ σ3 ⊗ σ2 ⊗ 1

γ6 = σ2 ⊗ σ2 ⊗ 1⊗ σ1

γ7 = σ2 ⊗ σ2 ⊗ 1⊗ σ3

γ8 = σ2 ⊗ 1⊗ 1⊗ 1

and the 8-dimensional chirality operator is given by

γ11 = σ3 ⊗ 1⊗ 1⊗ 1.

These γm are all real and symmetric. The charge conjugation matrix is C = Γ0. Notice that Γ11 ≡∏9
m=0 Γm = σ3⊗116, which is the 10-dimensional chirality operator. The Γ-matrices satisfy the following

algebra

{Γa,Γb} = 2ηab.

A.3 The Killing Spinor Equations

We arrive at the Killing spinor equations by requiring that the supersymmetry variations of the fermions

vanish.

A.3.1 Type IIA String Theory

The Killing spinor variations for type IIA string theory are written in terms of the 32-component full

spinor E. The gravitino variation is
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δΦm = ∇mE −
1

8
/HmΓ11E −

1

16
eφ /F (2)ΓmΓ11E +

1

192
eφ /F (4)ΓmE,

and the dilatino variation is

δΛ =

(
/∂φ− 1

12
/HΓ11 −

3

8
eφ /F (2)Γ11 +

1

96
eφ /F (4)

)
E.

A.3.2 Type IIB String Theory

Type IIB string theory contains fermions which are doublets of gravitini and dilatini, which have opposite

chirality. In this treatment, we choose the dilatini λ and λ̂ to have negative chirality, whilst the gravitini

ψ and ψ̂ have positive chirality. The Killing spinors, or supersymmetry parameters, ε and ε̂ also have

positive chirality. Then the gravitino variations (in two-component form) are

δψm =∇mε−
1

4
/Hmε−

eφ

8

(
/F (1) + /F (3) +

1

2
/F (5)

)
Γmε̂,

δψ̂m =∇mε̂+
1

4
/Hmε̂+

eφ

8

(
/F (1) − /F (3) +

1

2
/F (5)

)
Γmε,

and the dilatino variations (in two-component form) are

δλ =/∂φε− 1

2
/Hε+

eφ

2

(
2/F (1) + /F (3)

)
ε̂,

δλ̂ =/∂φε̂+
1

2
/Hε̂− eφ

2

(
2/F (1) − /F (3)

)
ε,

where

/F (n) =
1

n!
Fm1...mnΓm1...mn

/Hm =
1

2
HmnrΓ

nr.

A.4 Hodge Duality

The Hodge duality conventions are such that on a p-form in D-dimensions

(?Fp)µp+1·µD =
1

p!

√
|g|εµ1...µDF

µ1...µp .
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Note also that ? ? Fp = s(−1)p(D−1)Fp where s is the spacetime signature.
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Appendix B

D(2, 1;α) Supercoset Currents

This appendix is taken directly from our paper [36].

Due to the structure (5.14) of the superalgebra d(2, 1; c2) and the chosen coset element (5.15), the coset

currents J (0) and J have the following components (see (5.19)):

J
(0)
P =

[
e−B

(
dxP + dθαQα + dλ+L+

)
eB
]
P
, J

(0)
K = 0 , J

(0)
D =

[
e−BdeB

]
D
,

J
(0)
L+

=
[
e−B

(
dxP + dθαQα + dλ+L+

)
eB
]
L+

, J
(0)
L−

= 0 , J
(0)
L3

=
[
e−BdeB

]
L3

,

J
(0)
Rαβ

=
[
e−BdeB

]
Rαβ

,

J
(0)
Qα

=
[
e−B

(
dxP + dθαQα + dλ+L+

)
eB
]
Qα

, J
(0)

Q̂α
=
[
e−BdeB

]
Q̂α

,

J
(0)
Sα

= 0 , J
(0)

Ŝα
=
[
e−BdeB

]
Ŝα

(B.1a)

and
JP = J

(0)
P , JQα = J

(0)
Qα

, JL+
= J

(0)
L+

,

JD = J
(0)
D + σ2

αβJ
(0)
Qα
ξβ , JL3

= J
(0)
L3

+ ic2σ2
αβJ

(0)
Qα
ξβ ,

JRαβ = J
(0)
Rαβ
− is2σ2

αγJ
(0)
Qγ
ξβ − i

2s
2σ2
γδδ

α
βJ

(0)
Qγ
ξδ ,

JQ̂α = J
(0)

Q̂α
− J (0)

P ξα , JŜα = J
(0)

Ŝα
+ J

(0)
L+
ξα ,

JK = −σ2
αβJ

(0)

Ŝα
ξβ + i

2J
(0)
L+
ξ2 , JL− = −c2σ2

αβJ
(0)

Q̂α
ξβ − i

2c
2J

(0)
P ξ2 ,

JSα = − 1
2J

(0)
D ξα − i

2J
(0)
L3
ξα − iJ

(0)

Rβα
ξβ + dξα − i

2s
2J

(0)
Qα
ξ2 .

(B.1b)

In these expressions, we have made all the ξ-dependence explicit.

Dual currents

The Maurer-Cartan form J̃ = g̃−1dg̃ constructed from the dual coset representative (5.26) is of the form

J̃ = e−σ
1β
αξ
αQβ J̃ (0)eσ

1β
αξ
αQβ + σ1 β

αdξαQβ

= J̃ (0) − σ1 β
αξ
α
[
Sβ , J̃

(0)
]
− i

4ξ
2σ2αβ

{
Sα,

[
Sβ , J̃

(0)
]}

+ σ1 β
αdξαQβ ,

(B.2)
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where, as before, J̃ (0) does not depend on the fermonic coordinate ξα, and we have set ξ2 := iσ2
αβξ

αξβ .

A calculation similar to the one that led to (B.1) yields

J̃
(0)
P = 0 , J̃

(0)
K =

[
e−B

(
dx̃K − iσ2αβdθ̃αSβ + dλ̃+L−

)
eB
]
K
, J̃

(0)
D =

[
e−BdeB

]
D
,

J̃
(0)
L+

= 0 , J̃
(0)
L−

=
[
e−B

(
dx̃K − iσ2αβdθ̃αSβ + dλ̃+L−

)
eB
]
L−

, J̃
(0)
L3

=
[
e−BdeB

]
L3

,

J̃
(0)
Rαβ

=
[
e−BdeB

]
Rαβ

,

J̃
(0)
Qα

= 0 , J̃
(0)

Q̂α
=
[
e−BdeB

]
Q̂α

,

J̃
(0)
Sα

=
[
e−B

(
dx̃K − iσ2αβdθ̃αSβ + dλ̃+L−

)
eB
]
Sα

, J̃
(0)

Ŝα
=
[
e−BdeB

]
Ŝα

(B.3a)

and
J̃K = J̃

(0)
K , J̃Sα = J̃

(0)
Sα

, J̃L− = J̃
(0)
L−

,

J̃D = J̃
(0)
D − iσ1

αβ J̃
(0)
Sα
ξβ , J̃L3

= J̃
(0)
L3

+ c2σ1
αβ J̃

(0)
Sα
ξβ ,

J̃Rαβ = J̃
(0)
Rαβ

+ s2
(
σ1
αγ J̃

(0)
Sβ
− 1

2δ
β
ασ

1
γδJ̃

(0)
Sδ

)
ξγ ,

J̃Q̂α = J̃
(0)

Q̂α
+ σ1α

β J̃
(0)
L−
ξβ , J̃Ŝα = J̃

(0)

Ŝα
− σ1α

β J̃
(0)
K ξβ ,

J̃P = −iσ1
αβ J̃

(0)

Q̂α
ξβ − i

2 J̃
(0)
L−
ξ2 , J̃L+

= −ic2σ1
αβ J̃

(0)

Ŝα
ξβ + i

2c
2J̃

(0)
K ξ2 ,

J̃Qα = σ1α
β

(
1
2 J̃

(0)
D ξβ + i

2 J̃
(0)

L̃3
ξβ + dξβ

)
− iσ1 β

γ J̃
(0)

Rβα
ξγ + i

2s
2J̃

(0)
Sα
ξ2 .

(B.3b)

As before, in these expressions, we have made all the ξ-dependence explicit. Note that J̃
(0)

Q̂α
= J

(0)

Q̂α
,

J̃
(0)

Ŝα
= J

(0)

Ŝα
, J̃

(0)
D = J

(0)
D , J̃

(0)
L3

= J
(0)
L3

, and J̃
(0)

Rβα
= J

(0)

Rβα
, respectively.
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[23] E. Ó Colgáin, Fermionic T-duality: A snapshot review, Int. J. Mod. Phys. A 27

(2012)1230032[arXiv:1210.5588 [hep-th]].

[24] G. t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974)461.

[25] T. Azeyanagi, M. Fujita and M. Hanada, From the planar limit to M-theory, Phys. Rev.Lett. 110

(2013) 12, 121601[arXiv:1210.3601 [hep-th]].

[26] L. F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT ,JHEP 0711

(2007) 068[arXiv:0710.1060 [hep-th]].

[27] J. M. Drummond, G. P. Korchemsky and E. Sokatchev, Conformal properties of four-gluonplanar

amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385[arXiv:0707.0243 [hep-th]].

[28] A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Millsand Wilson

loops, Nucl. Phys. B 794 (2008) 231[arXiv:0707.1153 [hep-th]].

[29] L. F. Alday and R. Roiban, Scattering Amplitudes, Wilson Loops and the String/GaugeTheory

Correspondence, Phys. Rept. 468 (2008) 153[arXiv:0807.1889 [hep-th]].

[30] J. M. Drummond, Review of AdS/CFT Integrability, Chapter V.2: Dual SuperconformalSymmetry,

Lett. Math. Phys. 99 (2012) 481[arXiv:1012.4002 [hep-th]].

[31] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Dual superconformalsym-

metry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828(2010)

317[arXiv:0807.1095 [hep-th]].

[32] J. M. Drummond, J. Henn, V. A. Smirnov and E. Sokatchev, Magic identities for conformalfour-point

integrals, JHEP 0701 (2007) 064[hep-th/0607160].

[33] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99(2012)

3[arXiv:1012.3982 [hep-th]].

[34] A. A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys.Lett. B 242

(1990) 163.

[35] A. A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl.Phys. B

350 (1991) 395.

[36] M. C. Abbott, J. Murugan, S. Penati, A. Pittelli, D. Sorokin, P. Sundin, J. Tarrant, M. Wolfand

L. Wulff, T-duality of Green-Schwarz superstrings on AdSd × Sd × M10−2d , JHEP 1512(2015)

104[arXiv:1509.07678 [hep-th]].



BIBLIOGRAPHY 115

[37] A. Babichenko, B. Stefanski, Jr. and K. Zarembo, Integrability and the AdS3/CFT2 correspondence,

JHEP 1003 (2010) 058[arXiv:0912.1723 [hep-th]].

[38] D. Sorokin and L. Wulff, Evidence for the classical integrability of the complete AdS4 ×
CP 3superstring, JHEP 1011 (2010) 143[arXiv:1009.3498 [hep-th]].

[39] D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS2 × S2 × T 6 , J. Phys.A 44

(2011) 275401[arXiv:1104.1793 [hep-th]].

[40] A. Cagnazzo, D. Sorokin and L. Wulff, More on integrable structures of superstrings inAdS4 ×CP 3

and AdS2 × S2 × T 6 superbackgrounds, JHEP 1201 (2012) 004[arXiv:1111.4197[hep-th]].

[41] P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS3 × S3 × S3 ×
S1superstring, JHEP 1210 (2012) 109[arXiv:1207.5531 [hep-th]].
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